Solve for x
x=3
x=\frac{1}{3}\approx 0.333333333
Graph
Share
Copied to clipboard
5+\left(x-2\right)\times 10=3\left(x-2\right)\left(x+2\right)
Variable x cannot be equal to any of the values -2,2 since division by zero is not defined. Multiply both sides of the equation by \left(x-2\right)\left(x+2\right), the least common multiple of x^{2}-4,x+2.
5+10x-20=3\left(x-2\right)\left(x+2\right)
Use the distributive property to multiply x-2 by 10.
-15+10x=3\left(x-2\right)\left(x+2\right)
Subtract 20 from 5 to get -15.
-15+10x=\left(3x-6\right)\left(x+2\right)
Use the distributive property to multiply 3 by x-2.
-15+10x=3x^{2}-12
Use the distributive property to multiply 3x-6 by x+2 and combine like terms.
-15+10x-3x^{2}=-12
Subtract 3x^{2} from both sides.
-15+10x-3x^{2}+12=0
Add 12 to both sides.
-3+10x-3x^{2}=0
Add -15 and 12 to get -3.
-3x^{2}+10x-3=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=10 ab=-3\left(-3\right)=9
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -3x^{2}+ax+bx-3. To find a and b, set up a system to be solved.
1,9 3,3
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 9.
1+9=10 3+3=6
Calculate the sum for each pair.
a=9 b=1
The solution is the pair that gives sum 10.
\left(-3x^{2}+9x\right)+\left(x-3\right)
Rewrite -3x^{2}+10x-3 as \left(-3x^{2}+9x\right)+\left(x-3\right).
3x\left(-x+3\right)-\left(-x+3\right)
Factor out 3x in the first and -1 in the second group.
\left(-x+3\right)\left(3x-1\right)
Factor out common term -x+3 by using distributive property.
x=3 x=\frac{1}{3}
To find equation solutions, solve -x+3=0 and 3x-1=0.
5+\left(x-2\right)\times 10=3\left(x-2\right)\left(x+2\right)
Variable x cannot be equal to any of the values -2,2 since division by zero is not defined. Multiply both sides of the equation by \left(x-2\right)\left(x+2\right), the least common multiple of x^{2}-4,x+2.
5+10x-20=3\left(x-2\right)\left(x+2\right)
Use the distributive property to multiply x-2 by 10.
-15+10x=3\left(x-2\right)\left(x+2\right)
Subtract 20 from 5 to get -15.
-15+10x=\left(3x-6\right)\left(x+2\right)
Use the distributive property to multiply 3 by x-2.
-15+10x=3x^{2}-12
Use the distributive property to multiply 3x-6 by x+2 and combine like terms.
-15+10x-3x^{2}=-12
Subtract 3x^{2} from both sides.
-15+10x-3x^{2}+12=0
Add 12 to both sides.
-3+10x-3x^{2}=0
Add -15 and 12 to get -3.
-3x^{2}+10x-3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-10±\sqrt{10^{2}-4\left(-3\right)\left(-3\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 10 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-10±\sqrt{100-4\left(-3\right)\left(-3\right)}}{2\left(-3\right)}
Square 10.
x=\frac{-10±\sqrt{100+12\left(-3\right)}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-10±\sqrt{100-36}}{2\left(-3\right)}
Multiply 12 times -3.
x=\frac{-10±\sqrt{64}}{2\left(-3\right)}
Add 100 to -36.
x=\frac{-10±8}{2\left(-3\right)}
Take the square root of 64.
x=\frac{-10±8}{-6}
Multiply 2 times -3.
x=-\frac{2}{-6}
Now solve the equation x=\frac{-10±8}{-6} when ± is plus. Add -10 to 8.
x=\frac{1}{3}
Reduce the fraction \frac{-2}{-6} to lowest terms by extracting and canceling out 2.
x=-\frac{18}{-6}
Now solve the equation x=\frac{-10±8}{-6} when ± is minus. Subtract 8 from -10.
x=3
Divide -18 by -6.
x=\frac{1}{3} x=3
The equation is now solved.
5+\left(x-2\right)\times 10=3\left(x-2\right)\left(x+2\right)
Variable x cannot be equal to any of the values -2,2 since division by zero is not defined. Multiply both sides of the equation by \left(x-2\right)\left(x+2\right), the least common multiple of x^{2}-4,x+2.
5+10x-20=3\left(x-2\right)\left(x+2\right)
Use the distributive property to multiply x-2 by 10.
-15+10x=3\left(x-2\right)\left(x+2\right)
Subtract 20 from 5 to get -15.
-15+10x=\left(3x-6\right)\left(x+2\right)
Use the distributive property to multiply 3 by x-2.
-15+10x=3x^{2}-12
Use the distributive property to multiply 3x-6 by x+2 and combine like terms.
-15+10x-3x^{2}=-12
Subtract 3x^{2} from both sides.
10x-3x^{2}=-12+15
Add 15 to both sides.
10x-3x^{2}=3
Add -12 and 15 to get 3.
-3x^{2}+10x=3
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-3x^{2}+10x}{-3}=\frac{3}{-3}
Divide both sides by -3.
x^{2}+\frac{10}{-3}x=\frac{3}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}-\frac{10}{3}x=\frac{3}{-3}
Divide 10 by -3.
x^{2}-\frac{10}{3}x=-1
Divide 3 by -3.
x^{2}-\frac{10}{3}x+\left(-\frac{5}{3}\right)^{2}=-1+\left(-\frac{5}{3}\right)^{2}
Divide -\frac{10}{3}, the coefficient of the x term, by 2 to get -\frac{5}{3}. Then add the square of -\frac{5}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{10}{3}x+\frac{25}{9}=-1+\frac{25}{9}
Square -\frac{5}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{10}{3}x+\frac{25}{9}=\frac{16}{9}
Add -1 to \frac{25}{9}.
\left(x-\frac{5}{3}\right)^{2}=\frac{16}{9}
Factor x^{2}-\frac{10}{3}x+\frac{25}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{3}\right)^{2}}=\sqrt{\frac{16}{9}}
Take the square root of both sides of the equation.
x-\frac{5}{3}=\frac{4}{3} x-\frac{5}{3}=-\frac{4}{3}
Simplify.
x=3 x=\frac{1}{3}
Add \frac{5}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}