Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

5=\left(x-2\right)\left(x+3\right)\times 2+\left(x+3\right)\left(x-3\right)
Variable x cannot be equal to any of the values -3,2 since division by zero is not defined. Multiply both sides of the equation by \left(x-2\right)\left(x+3\right), the least common multiple of x^{2}+x-6,x-2.
5=\left(x^{2}+x-6\right)\times 2+\left(x+3\right)\left(x-3\right)
Use the distributive property to multiply x-2 by x+3 and combine like terms.
5=2x^{2}+2x-12+\left(x+3\right)\left(x-3\right)
Use the distributive property to multiply x^{2}+x-6 by 2.
5=2x^{2}+2x-12+x^{2}-9
Consider \left(x+3\right)\left(x-3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 3.
5=3x^{2}+2x-12-9
Combine 2x^{2} and x^{2} to get 3x^{2}.
5=3x^{2}+2x-21
Subtract 9 from -12 to get -21.
3x^{2}+2x-21=5
Swap sides so that all variable terms are on the left hand side.
3x^{2}+2x-21-5=0
Subtract 5 from both sides.
3x^{2}+2x-26=0
Subtract 5 from -21 to get -26.
x=\frac{-2±\sqrt{2^{2}-4\times 3\left(-26\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 2 for b, and -26 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\times 3\left(-26\right)}}{2\times 3}
Square 2.
x=\frac{-2±\sqrt{4-12\left(-26\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-2±\sqrt{4+312}}{2\times 3}
Multiply -12 times -26.
x=\frac{-2±\sqrt{316}}{2\times 3}
Add 4 to 312.
x=\frac{-2±2\sqrt{79}}{2\times 3}
Take the square root of 316.
x=\frac{-2±2\sqrt{79}}{6}
Multiply 2 times 3.
x=\frac{2\sqrt{79}-2}{6}
Now solve the equation x=\frac{-2±2\sqrt{79}}{6} when ± is plus. Add -2 to 2\sqrt{79}.
x=\frac{\sqrt{79}-1}{3}
Divide -2+2\sqrt{79} by 6.
x=\frac{-2\sqrt{79}-2}{6}
Now solve the equation x=\frac{-2±2\sqrt{79}}{6} when ± is minus. Subtract 2\sqrt{79} from -2.
x=\frac{-\sqrt{79}-1}{3}
Divide -2-2\sqrt{79} by 6.
x=\frac{\sqrt{79}-1}{3} x=\frac{-\sqrt{79}-1}{3}
The equation is now solved.
5=\left(x-2\right)\left(x+3\right)\times 2+\left(x+3\right)\left(x-3\right)
Variable x cannot be equal to any of the values -3,2 since division by zero is not defined. Multiply both sides of the equation by \left(x-2\right)\left(x+3\right), the least common multiple of x^{2}+x-6,x-2.
5=\left(x^{2}+x-6\right)\times 2+\left(x+3\right)\left(x-3\right)
Use the distributive property to multiply x-2 by x+3 and combine like terms.
5=2x^{2}+2x-12+\left(x+3\right)\left(x-3\right)
Use the distributive property to multiply x^{2}+x-6 by 2.
5=2x^{2}+2x-12+x^{2}-9
Consider \left(x+3\right)\left(x-3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 3.
5=3x^{2}+2x-12-9
Combine 2x^{2} and x^{2} to get 3x^{2}.
5=3x^{2}+2x-21
Subtract 9 from -12 to get -21.
3x^{2}+2x-21=5
Swap sides so that all variable terms are on the left hand side.
3x^{2}+2x=5+21
Add 21 to both sides.
3x^{2}+2x=26
Add 5 and 21 to get 26.
\frac{3x^{2}+2x}{3}=\frac{26}{3}
Divide both sides by 3.
x^{2}+\frac{2}{3}x=\frac{26}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}+\frac{2}{3}x+\left(\frac{1}{3}\right)^{2}=\frac{26}{3}+\left(\frac{1}{3}\right)^{2}
Divide \frac{2}{3}, the coefficient of the x term, by 2 to get \frac{1}{3}. Then add the square of \frac{1}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{2}{3}x+\frac{1}{9}=\frac{26}{3}+\frac{1}{9}
Square \frac{1}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{2}{3}x+\frac{1}{9}=\frac{79}{9}
Add \frac{26}{3} to \frac{1}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{3}\right)^{2}=\frac{79}{9}
Factor x^{2}+\frac{2}{3}x+\frac{1}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{3}\right)^{2}}=\sqrt{\frac{79}{9}}
Take the square root of both sides of the equation.
x+\frac{1}{3}=\frac{\sqrt{79}}{3} x+\frac{1}{3}=-\frac{\sqrt{79}}{3}
Simplify.
x=\frac{\sqrt{79}-1}{3} x=\frac{-\sqrt{79}-1}{3}
Subtract \frac{1}{3} from both sides of the equation.