Solve for x
x = \frac{5}{3} = 1\frac{2}{3} \approx 1.666666667
Graph
Share
Copied to clipboard
\left(x-2\right)\times 5+x\left(x+3\right)=\left(x+2\right)x
Variable x cannot be equal to any of the values -2,2 since division by zero is not defined. Multiply both sides of the equation by \left(x-2\right)\left(x+2\right), the least common multiple of x+2,x^{2}-4,x-2.
5x-10+x\left(x+3\right)=\left(x+2\right)x
Use the distributive property to multiply x-2 by 5.
5x-10+x^{2}+3x=\left(x+2\right)x
Use the distributive property to multiply x by x+3.
8x-10+x^{2}=\left(x+2\right)x
Combine 5x and 3x to get 8x.
8x-10+x^{2}=x^{2}+2x
Use the distributive property to multiply x+2 by x.
8x-10+x^{2}-x^{2}=2x
Subtract x^{2} from both sides.
8x-10=2x
Combine x^{2} and -x^{2} to get 0.
8x-10-2x=0
Subtract 2x from both sides.
6x-10=0
Combine 8x and -2x to get 6x.
6x=10
Add 10 to both sides. Anything plus zero gives itself.
x=\frac{10}{6}
Divide both sides by 6.
x=\frac{5}{3}
Reduce the fraction \frac{10}{6} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}