Solve for x
x = -\frac{7}{2} = -3\frac{1}{2} = -3.5
Graph
Share
Copied to clipboard
\left(x-1\right)\times 5+\left(x-1\right)\left(x+1\right)\left(-1\right)=\left(x+1\right)\left(10-x\right)
Variable x cannot be equal to any of the values -1,1 since division by zero is not defined. Multiply both sides of the equation by \left(x-1\right)\left(x+1\right), the least common multiple of x+1,x-1.
5x-5+\left(x-1\right)\left(x+1\right)\left(-1\right)=\left(x+1\right)\left(10-x\right)
Use the distributive property to multiply x-1 by 5.
5x-5+\left(x^{2}-1\right)\left(-1\right)=\left(x+1\right)\left(10-x\right)
Use the distributive property to multiply x-1 by x+1 and combine like terms.
5x-5-x^{2}+1=\left(x+1\right)\left(10-x\right)
Use the distributive property to multiply x^{2}-1 by -1.
5x-4-x^{2}=\left(x+1\right)\left(10-x\right)
Add -5 and 1 to get -4.
5x-4-x^{2}=9x-x^{2}+10
Use the distributive property to multiply x+1 by 10-x and combine like terms.
5x-4-x^{2}-9x=-x^{2}+10
Subtract 9x from both sides.
-4x-4-x^{2}=-x^{2}+10
Combine 5x and -9x to get -4x.
-4x-4-x^{2}+x^{2}=10
Add x^{2} to both sides.
-4x-4=10
Combine -x^{2} and x^{2} to get 0.
-4x=10+4
Add 4 to both sides.
-4x=14
Add 10 and 4 to get 14.
x=\frac{14}{-4}
Divide both sides by -4.
x=-\frac{7}{2}
Reduce the fraction \frac{14}{-4} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}