Solve for w
w=5
Share
Copied to clipboard
5=w-4+\left(w-3\right)\times 2
Variable w cannot be equal to any of the values 3,4 since division by zero is not defined. Multiply both sides of the equation by \left(w-4\right)\left(w-3\right), the least common multiple of w^{2}-7w+12,w-3,w-4.
5=w-4+2w-6
Use the distributive property to multiply w-3 by 2.
5=3w-4-6
Combine w and 2w to get 3w.
5=3w-10
Subtract 6 from -4 to get -10.
3w-10=5
Swap sides so that all variable terms are on the left hand side.
3w=5+10
Add 10 to both sides.
3w=15
Add 5 and 10 to get 15.
w=\frac{15}{3}
Divide both sides by 3.
w=5
Divide 15 by 3 to get 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}