Solve for v
v=3
Share
Copied to clipboard
5-2=3\left(v-2\right)
Variable v cannot be equal to 2 since division by zero is not defined. Multiply both sides of the equation by v-2.
3=3\left(v-2\right)
Subtract 2 from 5 to get 3.
3=3v-6
Use the distributive property to multiply 3 by v-2.
3v-6=3
Swap sides so that all variable terms are on the left hand side.
3v=3+6
Add 6 to both sides.
3v=9
Add 3 and 6 to get 9.
v=\frac{9}{3}
Divide both sides by 3.
v=3
Divide 9 by 3 to get 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}