Solve for t
t=\frac{40}{v+5}
v\neq 0\text{ and }v\neq -5
Solve for v
v=-5+\frac{40}{t}
t\neq 8\text{ and }t\neq 0
Share
Copied to clipboard
\left(t-8\right)\times 5=-vt
Variable t cannot be equal to 8 since division by zero is not defined. Multiply both sides of the equation by v\left(t-8\right), the least common multiple of v,8-t.
5t-40=-vt
Use the distributive property to multiply t-8 by 5.
5t-40+vt=0
Add vt to both sides.
5t+vt=40
Add 40 to both sides. Anything plus zero gives itself.
\left(5+v\right)t=40
Combine all terms containing t.
\left(v+5\right)t=40
The equation is in standard form.
\frac{\left(v+5\right)t}{v+5}=\frac{40}{v+5}
Divide both sides by v+5.
t=\frac{40}{v+5}
Dividing by v+5 undoes the multiplication by v+5.
t=\frac{40}{v+5}\text{, }t\neq 8
Variable t cannot be equal to 8.
\left(t-8\right)\times 5=-vt
Variable v cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by v\left(t-8\right), the least common multiple of v,8-t.
5t-40=-vt
Use the distributive property to multiply t-8 by 5.
-vt=5t-40
Swap sides so that all variable terms are on the left hand side.
\left(-t\right)v=5t-40
The equation is in standard form.
\frac{\left(-t\right)v}{-t}=\frac{5t-40}{-t}
Divide both sides by -t.
v=\frac{5t-40}{-t}
Dividing by -t undoes the multiplication by -t.
v=-5+\frac{40}{t}
Divide -40+5t by -t.
v=-5+\frac{40}{t}\text{, }v\neq 0
Variable v cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}