Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{5}{v+6}+\frac{v+7}{\left(v-6\right)\left(v+6\right)}+\frac{4}{v-6}
Factor v^{2}-36.
\frac{5\left(v-6\right)}{\left(v-6\right)\left(v+6\right)}+\frac{v+7}{\left(v-6\right)\left(v+6\right)}+\frac{4}{v-6}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of v+6 and \left(v-6\right)\left(v+6\right) is \left(v-6\right)\left(v+6\right). Multiply \frac{5}{v+6} times \frac{v-6}{v-6}.
\frac{5\left(v-6\right)+v+7}{\left(v-6\right)\left(v+6\right)}+\frac{4}{v-6}
Since \frac{5\left(v-6\right)}{\left(v-6\right)\left(v+6\right)} and \frac{v+7}{\left(v-6\right)\left(v+6\right)} have the same denominator, add them by adding their numerators.
\frac{5v-30+v+7}{\left(v-6\right)\left(v+6\right)}+\frac{4}{v-6}
Do the multiplications in 5\left(v-6\right)+v+7.
\frac{6v-23}{\left(v-6\right)\left(v+6\right)}+\frac{4}{v-6}
Combine like terms in 5v-30+v+7.
\frac{6v-23}{\left(v-6\right)\left(v+6\right)}+\frac{4\left(v+6\right)}{\left(v-6\right)\left(v+6\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(v-6\right)\left(v+6\right) and v-6 is \left(v-6\right)\left(v+6\right). Multiply \frac{4}{v-6} times \frac{v+6}{v+6}.
\frac{6v-23+4\left(v+6\right)}{\left(v-6\right)\left(v+6\right)}
Since \frac{6v-23}{\left(v-6\right)\left(v+6\right)} and \frac{4\left(v+6\right)}{\left(v-6\right)\left(v+6\right)} have the same denominator, add them by adding their numerators.
\frac{6v-23+4v+24}{\left(v-6\right)\left(v+6\right)}
Do the multiplications in 6v-23+4\left(v+6\right).
\frac{10v+1}{\left(v-6\right)\left(v+6\right)}
Combine like terms in 6v-23+4v+24.
\frac{10v+1}{v^{2}-36}
Expand \left(v-6\right)\left(v+6\right).
\frac{5}{v+6}+\frac{v+7}{\left(v-6\right)\left(v+6\right)}+\frac{4}{v-6}
Factor v^{2}-36.
\frac{5\left(v-6\right)}{\left(v-6\right)\left(v+6\right)}+\frac{v+7}{\left(v-6\right)\left(v+6\right)}+\frac{4}{v-6}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of v+6 and \left(v-6\right)\left(v+6\right) is \left(v-6\right)\left(v+6\right). Multiply \frac{5}{v+6} times \frac{v-6}{v-6}.
\frac{5\left(v-6\right)+v+7}{\left(v-6\right)\left(v+6\right)}+\frac{4}{v-6}
Since \frac{5\left(v-6\right)}{\left(v-6\right)\left(v+6\right)} and \frac{v+7}{\left(v-6\right)\left(v+6\right)} have the same denominator, add them by adding their numerators.
\frac{5v-30+v+7}{\left(v-6\right)\left(v+6\right)}+\frac{4}{v-6}
Do the multiplications in 5\left(v-6\right)+v+7.
\frac{6v-23}{\left(v-6\right)\left(v+6\right)}+\frac{4}{v-6}
Combine like terms in 5v-30+v+7.
\frac{6v-23}{\left(v-6\right)\left(v+6\right)}+\frac{4\left(v+6\right)}{\left(v-6\right)\left(v+6\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(v-6\right)\left(v+6\right) and v-6 is \left(v-6\right)\left(v+6\right). Multiply \frac{4}{v-6} times \frac{v+6}{v+6}.
\frac{6v-23+4\left(v+6\right)}{\left(v-6\right)\left(v+6\right)}
Since \frac{6v-23}{\left(v-6\right)\left(v+6\right)} and \frac{4\left(v+6\right)}{\left(v-6\right)\left(v+6\right)} have the same denominator, add them by adding their numerators.
\frac{6v-23+4v+24}{\left(v-6\right)\left(v+6\right)}
Do the multiplications in 6v-23+4\left(v+6\right).
\frac{10v+1}{\left(v-6\right)\left(v+6\right)}
Combine like terms in 6v-23+4v+24.
\frac{10v+1}{v^{2}-36}
Expand \left(v-6\right)\left(v+6\right).