Evaluate
\frac{u^{2}-5u+26}{u^{2}-10u+26}
Differentiate w.r.t. u
\frac{5\left(26-u^{2}\right)}{\left(u^{2}-10u+26\right)^{2}}
Share
Copied to clipboard
\frac{5}{\frac{\left(u-10\right)u}{u}+\frac{26}{u}}+1
To add or subtract expressions, expand them to make their denominators the same. Multiply u-10 times \frac{u}{u}.
\frac{5}{\frac{\left(u-10\right)u+26}{u}}+1
Since \frac{\left(u-10\right)u}{u} and \frac{26}{u} have the same denominator, add them by adding their numerators.
\frac{5}{\frac{u^{2}-10u+26}{u}}+1
Do the multiplications in \left(u-10\right)u+26.
\frac{5u}{u^{2}-10u+26}+1
Divide 5 by \frac{u^{2}-10u+26}{u} by multiplying 5 by the reciprocal of \frac{u^{2}-10u+26}{u}.
\frac{5u}{u^{2}-10u+26}+\frac{u^{2}-10u+26}{u^{2}-10u+26}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{u^{2}-10u+26}{u^{2}-10u+26}.
\frac{5u+u^{2}-10u+26}{u^{2}-10u+26}
Since \frac{5u}{u^{2}-10u+26} and \frac{u^{2}-10u+26}{u^{2}-10u+26} have the same denominator, add them by adding their numerators.
\frac{-5u+u^{2}+26}{u^{2}-10u+26}
Combine like terms in 5u+u^{2}-10u+26.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}