Solve for q
q=-23
Share
Copied to clipboard
\left(q-3\right)\times 5-\left(q+3\right)\times 3=3q-1
Variable q cannot be equal to any of the values -3,3 since division by zero is not defined. Multiply both sides of the equation by \left(q-3\right)\left(q+3\right), the least common multiple of q+3,q-3,q^{2}-9.
5q-15-\left(q+3\right)\times 3=3q-1
Use the distributive property to multiply q-3 by 5.
5q-15-\left(3q+9\right)=3q-1
Use the distributive property to multiply q+3 by 3.
5q-15-3q-9=3q-1
To find the opposite of 3q+9, find the opposite of each term.
2q-15-9=3q-1
Combine 5q and -3q to get 2q.
2q-24=3q-1
Subtract 9 from -15 to get -24.
2q-24-3q=-1
Subtract 3q from both sides.
-q-24=-1
Combine 2q and -3q to get -q.
-q=-1+24
Add 24 to both sides.
-q=23
Add -1 and 24 to get 23.
q=-23
Multiply both sides by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}