Evaluate
\frac{81}{k}
Differentiate w.r.t. k
-\frac{81}{k^{2}}
Share
Copied to clipboard
\frac{25}{k}+\frac{60}{k}-\frac{4}{k}
Since \frac{5}{k} and \frac{20}{k} have the same denominator, add them by adding their numerators. Add 5 and 20 to get 25.
\frac{85}{k}-\frac{4}{k}
Since \frac{25}{k} and \frac{60}{k} have the same denominator, add them by adding their numerators. Add 25 and 60 to get 85.
\frac{81}{k}
Since \frac{85}{k} and \frac{4}{k} have the same denominator, subtract them by subtracting their numerators. Subtract 4 from 85 to get 81.
\frac{\mathrm{d}}{\mathrm{d}k}(\frac{25}{k}+\frac{60}{k}-\frac{4}{k})
Since \frac{5}{k} and \frac{20}{k} have the same denominator, add them by adding their numerators. Add 5 and 20 to get 25.
\frac{\mathrm{d}}{\mathrm{d}k}(\frac{85}{k}-\frac{4}{k})
Since \frac{25}{k} and \frac{60}{k} have the same denominator, add them by adding their numerators. Add 25 and 60 to get 85.
\frac{\mathrm{d}}{\mathrm{d}k}(\frac{81}{k})
Since \frac{85}{k} and \frac{4}{k} have the same denominator, subtract them by subtracting their numerators. Subtract 4 from 85 to get 81.
-81k^{-1-1}
The derivative of ax^{n} is nax^{n-1}.
-81k^{-2}
Subtract 1 from -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}