Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{5}{e-f}-\frac{5f}{\left(f+e\right)\left(-f+e\right)}
Factor e^{2}-f^{2}.
\frac{5\left(f+e\right)}{\left(f+e\right)\left(-f+e\right)}-\frac{5f}{\left(f+e\right)\left(-f+e\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of e-f and \left(f+e\right)\left(-f+e\right) is \left(f+e\right)\left(-f+e\right). Multiply \frac{5}{e-f} times \frac{f+e}{f+e}.
\frac{5\left(f+e\right)-5f}{\left(f+e\right)\left(-f+e\right)}
Since \frac{5\left(f+e\right)}{\left(f+e\right)\left(-f+e\right)} and \frac{5f}{\left(f+e\right)\left(-f+e\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{5f+5e-5f}{\left(f+e\right)\left(-f+e\right)}
Do the multiplications in 5\left(f+e\right)-5f.
\frac{5e}{\left(f+e\right)\left(-f+e\right)}
Combine like terms in 5f+5e-5f.
\frac{5e}{-f^{2}+e^{2}}
Expand \left(f+e\right)\left(-f+e\right).