Evaluate
\frac{5e}{e^{2}-f^{2}}
Factor
\frac{5e}{e^{2}-f^{2}}
Share
Copied to clipboard
\frac{5}{e-f}-\frac{5f}{\left(f+e\right)\left(-f+e\right)}
Factor e^{2}-f^{2}.
\frac{5\left(f+e\right)}{\left(f+e\right)\left(-f+e\right)}-\frac{5f}{\left(f+e\right)\left(-f+e\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of e-f and \left(f+e\right)\left(-f+e\right) is \left(f+e\right)\left(-f+e\right). Multiply \frac{5}{e-f} times \frac{f+e}{f+e}.
\frac{5\left(f+e\right)-5f}{\left(f+e\right)\left(-f+e\right)}
Since \frac{5\left(f+e\right)}{\left(f+e\right)\left(-f+e\right)} and \frac{5f}{\left(f+e\right)\left(-f+e\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{5f+5e-5f}{\left(f+e\right)\left(-f+e\right)}
Do the multiplications in 5\left(f+e\right)-5f.
\frac{5e}{\left(f+e\right)\left(-f+e\right)}
Combine like terms in 5f+5e-5f.
\frac{5e}{-f^{2}+e^{2}}
Expand \left(f+e\right)\left(-f+e\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}