Solve for a
a = \frac{5}{4} = 1\frac{1}{4} = 1.25
b\neq 0
Solve for b
b\neq 0
a = \frac{5}{4} = 1\frac{1}{4} = 1.25
Share
Copied to clipboard
b\times 5=a\times 4b
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by ab, the least common multiple of a,b.
a\times 4b=b\times 5
Swap sides so that all variable terms are on the left hand side.
4ba=5b
The equation is in standard form.
\frac{4ba}{4b}=\frac{5b}{4b}
Divide both sides by 4b.
a=\frac{5b}{4b}
Dividing by 4b undoes the multiplication by 4b.
a=\frac{5}{4}
Divide 5b by 4b.
b\times 5=a\times 4b
Variable b cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by ab, the least common multiple of a,b.
b\times 5-a\times 4b=0
Subtract a\times 4b from both sides.
b\times 5-4ab=0
Multiply -1 and 4 to get -4.
\left(5-4a\right)b=0
Combine all terms containing b.
b=0
Divide 0 by 5-4a.
b\in \emptyset
Variable b cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}