Solve for a
a=\frac{1-5b}{3}
b\neq \frac{1}{5}\text{ and }b\neq 0
Solve for b
b=\frac{1-3a}{5}
a\neq \frac{1}{3}\text{ and }a\neq 0
Share
Copied to clipboard
b\times 5+a\times 3=1
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by ab, the least common multiple of a,b,ab.
a\times 3=1-b\times 5
Subtract b\times 5 from both sides.
a\times 3=1-5b
Multiply -1 and 5 to get -5.
3a=1-5b
The equation is in standard form.
\frac{3a}{3}=\frac{1-5b}{3}
Divide both sides by 3.
a=\frac{1-5b}{3}
Dividing by 3 undoes the multiplication by 3.
a=\frac{1-5b}{3}\text{, }a\neq 0
Variable a cannot be equal to 0.
b\times 5+a\times 3=1
Variable b cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by ab, the least common multiple of a,b,ab.
b\times 5=1-a\times 3
Subtract a\times 3 from both sides.
b\times 5=1-3a
Multiply -1 and 3 to get -3.
5b=1-3a
The equation is in standard form.
\frac{5b}{5}=\frac{1-3a}{5}
Divide both sides by 5.
b=\frac{1-3a}{5}
Dividing by 5 undoes the multiplication by 5.
b=\frac{1-3a}{5}\text{, }b\neq 0
Variable b cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}