Evaluate
\frac{25\left(3t-2\right)}{3\left(3-8t^{3}\right)\left(3t^{3}-10\right)}
Expand
-\frac{25\left(3t-2\right)}{3\left(3t^{3}-10\right)\left(8t^{3}-3\right)}
Share
Copied to clipboard
\frac{5}{9-24t^{3}}\times \frac{3t-2}{\frac{3t^{2}t}{5}-2}
Express \frac{3t^{2}}{5}t as a single fraction.
\frac{5}{9-24t^{3}}\times \frac{3t-2}{\frac{3t^{2}t}{5}-\frac{2\times 5}{5}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{5}{5}.
\frac{5}{9-24t^{3}}\times \frac{3t-2}{\frac{3t^{2}t-2\times 5}{5}}
Since \frac{3t^{2}t}{5} and \frac{2\times 5}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{5}{9-24t^{3}}\times \frac{3t-2}{\frac{3t^{3}-10}{5}}
Do the multiplications in 3t^{2}t-2\times 5.
\frac{5}{9-24t^{3}}\times \frac{\left(3t-2\right)\times 5}{3t^{3}-10}
Divide 3t-2 by \frac{3t^{3}-10}{5} by multiplying 3t-2 by the reciprocal of \frac{3t^{3}-10}{5}.
\frac{5\left(3t-2\right)\times 5}{\left(9-24t^{3}\right)\left(3t^{3}-10\right)}
Multiply \frac{5}{9-24t^{3}} times \frac{\left(3t-2\right)\times 5}{3t^{3}-10} by multiplying numerator times numerator and denominator times denominator.
\frac{25\left(3t-2\right)}{\left(9-24t^{3}\right)\left(3t^{3}-10\right)}
Multiply 5 and 5 to get 25.
\frac{75t-50}{\left(9-24t^{3}\right)\left(3t^{3}-10\right)}
Use the distributive property to multiply 25 by 3t-2.
\frac{75t-50}{267t^{3}-90-72t^{6}}
Use the distributive property to multiply 9-24t^{3} by 3t^{3}-10 and combine like terms.
\frac{5}{9-24t^{3}}\times \frac{3t-2}{\frac{3t^{2}t}{5}-2}
Express \frac{3t^{2}}{5}t as a single fraction.
\frac{5}{9-24t^{3}}\times \frac{3t-2}{\frac{3t^{2}t}{5}-\frac{2\times 5}{5}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{5}{5}.
\frac{5}{9-24t^{3}}\times \frac{3t-2}{\frac{3t^{2}t-2\times 5}{5}}
Since \frac{3t^{2}t}{5} and \frac{2\times 5}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{5}{9-24t^{3}}\times \frac{3t-2}{\frac{3t^{3}-10}{5}}
Do the multiplications in 3t^{2}t-2\times 5.
\frac{5}{9-24t^{3}}\times \frac{\left(3t-2\right)\times 5}{3t^{3}-10}
Divide 3t-2 by \frac{3t^{3}-10}{5} by multiplying 3t-2 by the reciprocal of \frac{3t^{3}-10}{5}.
\frac{5\left(3t-2\right)\times 5}{\left(9-24t^{3}\right)\left(3t^{3}-10\right)}
Multiply \frac{5}{9-24t^{3}} times \frac{\left(3t-2\right)\times 5}{3t^{3}-10} by multiplying numerator times numerator and denominator times denominator.
\frac{25\left(3t-2\right)}{\left(9-24t^{3}\right)\left(3t^{3}-10\right)}
Multiply 5 and 5 to get 25.
\frac{75t-50}{\left(9-24t^{3}\right)\left(3t^{3}-10\right)}
Use the distributive property to multiply 25 by 3t-2.
\frac{75t-50}{267t^{3}-90-72t^{6}}
Use the distributive property to multiply 9-24t^{3} by 3t^{3}-10 and combine like terms.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}