Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{5}{9-24t^{3}}\times \frac{3t-2}{\frac{3t^{2}t}{5}-2}
Express \frac{3t^{2}}{5}t as a single fraction.
\frac{5}{9-24t^{3}}\times \frac{3t-2}{\frac{3t^{2}t}{5}-\frac{2\times 5}{5}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{5}{5}.
\frac{5}{9-24t^{3}}\times \frac{3t-2}{\frac{3t^{2}t-2\times 5}{5}}
Since \frac{3t^{2}t}{5} and \frac{2\times 5}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{5}{9-24t^{3}}\times \frac{3t-2}{\frac{3t^{3}-10}{5}}
Do the multiplications in 3t^{2}t-2\times 5.
\frac{5}{9-24t^{3}}\times \frac{\left(3t-2\right)\times 5}{3t^{3}-10}
Divide 3t-2 by \frac{3t^{3}-10}{5} by multiplying 3t-2 by the reciprocal of \frac{3t^{3}-10}{5}.
\frac{5\left(3t-2\right)\times 5}{\left(9-24t^{3}\right)\left(3t^{3}-10\right)}
Multiply \frac{5}{9-24t^{3}} times \frac{\left(3t-2\right)\times 5}{3t^{3}-10} by multiplying numerator times numerator and denominator times denominator.
\frac{25\left(3t-2\right)}{\left(9-24t^{3}\right)\left(3t^{3}-10\right)}
Multiply 5 and 5 to get 25.
\frac{75t-50}{\left(9-24t^{3}\right)\left(3t^{3}-10\right)}
Use the distributive property to multiply 25 by 3t-2.
\frac{75t-50}{267t^{3}-90-72t^{6}}
Use the distributive property to multiply 9-24t^{3} by 3t^{3}-10 and combine like terms.
\frac{5}{9-24t^{3}}\times \frac{3t-2}{\frac{3t^{2}t}{5}-2}
Express \frac{3t^{2}}{5}t as a single fraction.
\frac{5}{9-24t^{3}}\times \frac{3t-2}{\frac{3t^{2}t}{5}-\frac{2\times 5}{5}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{5}{5}.
\frac{5}{9-24t^{3}}\times \frac{3t-2}{\frac{3t^{2}t-2\times 5}{5}}
Since \frac{3t^{2}t}{5} and \frac{2\times 5}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{5}{9-24t^{3}}\times \frac{3t-2}{\frac{3t^{3}-10}{5}}
Do the multiplications in 3t^{2}t-2\times 5.
\frac{5}{9-24t^{3}}\times \frac{\left(3t-2\right)\times 5}{3t^{3}-10}
Divide 3t-2 by \frac{3t^{3}-10}{5} by multiplying 3t-2 by the reciprocal of \frac{3t^{3}-10}{5}.
\frac{5\left(3t-2\right)\times 5}{\left(9-24t^{3}\right)\left(3t^{3}-10\right)}
Multiply \frac{5}{9-24t^{3}} times \frac{\left(3t-2\right)\times 5}{3t^{3}-10} by multiplying numerator times numerator and denominator times denominator.
\frac{25\left(3t-2\right)}{\left(9-24t^{3}\right)\left(3t^{3}-10\right)}
Multiply 5 and 5 to get 25.
\frac{75t-50}{\left(9-24t^{3}\right)\left(3t^{3}-10\right)}
Use the distributive property to multiply 25 by 3t-2.
\frac{75t-50}{267t^{3}-90-72t^{6}}
Use the distributive property to multiply 9-24t^{3} by 3t^{3}-10 and combine like terms.