Evaluate
\frac{17}{36}\approx 0.472222222
Factor
\frac{17}{2 ^ {2} \cdot 3 ^ {2}} = 0.4722222222222222
Share
Copied to clipboard
\frac{5}{9}-\left(-\frac{3}{4}+\frac{2}{4}\right)+\frac{10}{3}\left(\frac{1}{2}-\frac{3}{5}\right)
Least common multiple of 4 and 2 is 4. Convert -\frac{3}{4} and \frac{1}{2} to fractions with denominator 4.
\frac{5}{9}-\frac{-3+2}{4}+\frac{10}{3}\left(\frac{1}{2}-\frac{3}{5}\right)
Since -\frac{3}{4} and \frac{2}{4} have the same denominator, add them by adding their numerators.
\frac{5}{9}-\left(-\frac{1}{4}\right)+\frac{10}{3}\left(\frac{1}{2}-\frac{3}{5}\right)
Add -3 and 2 to get -1.
\frac{5}{9}+\frac{1}{4}+\frac{10}{3}\left(\frac{1}{2}-\frac{3}{5}\right)
The opposite of -\frac{1}{4} is \frac{1}{4}.
\frac{20}{36}+\frac{9}{36}+\frac{10}{3}\left(\frac{1}{2}-\frac{3}{5}\right)
Least common multiple of 9 and 4 is 36. Convert \frac{5}{9} and \frac{1}{4} to fractions with denominator 36.
\frac{20+9}{36}+\frac{10}{3}\left(\frac{1}{2}-\frac{3}{5}\right)
Since \frac{20}{36} and \frac{9}{36} have the same denominator, add them by adding their numerators.
\frac{29}{36}+\frac{10}{3}\left(\frac{1}{2}-\frac{3}{5}\right)
Add 20 and 9 to get 29.
\frac{29}{36}+\frac{10}{3}\left(\frac{5}{10}-\frac{6}{10}\right)
Least common multiple of 2 and 5 is 10. Convert \frac{1}{2} and \frac{3}{5} to fractions with denominator 10.
\frac{29}{36}+\frac{10}{3}\times \frac{5-6}{10}
Since \frac{5}{10} and \frac{6}{10} have the same denominator, subtract them by subtracting their numerators.
\frac{29}{36}+\frac{10}{3}\left(-\frac{1}{10}\right)
Subtract 6 from 5 to get -1.
\frac{29}{36}+\frac{10\left(-1\right)}{3\times 10}
Multiply \frac{10}{3} times -\frac{1}{10} by multiplying numerator times numerator and denominator times denominator.
\frac{29}{36}+\frac{-1}{3}
Cancel out 10 in both numerator and denominator.
\frac{29}{36}-\frac{1}{3}
Fraction \frac{-1}{3} can be rewritten as -\frac{1}{3} by extracting the negative sign.
\frac{29}{36}-\frac{12}{36}
Least common multiple of 36 and 3 is 36. Convert \frac{29}{36} and \frac{1}{3} to fractions with denominator 36.
\frac{29-12}{36}
Since \frac{29}{36} and \frac{12}{36} have the same denominator, subtract them by subtracting their numerators.
\frac{17}{36}
Subtract 12 from 29 to get 17.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}