Evaluate
\frac{82}{9}\approx 9.111111111
Factor
\frac{2 \cdot 41}{3 ^ {2}} = 9\frac{1}{9} = 9.11111111111111
Share
Copied to clipboard
\frac{5}{9\times 5}+\frac{5}{\frac{5}{9}}
Express \frac{\frac{5}{9}}{5} as a single fraction.
\frac{1}{9}+\frac{5}{\frac{5}{9}}
Cancel out 5 in both numerator and denominator.
\frac{1}{9}+5\times \frac{9}{5}
Divide 5 by \frac{5}{9} by multiplying 5 by the reciprocal of \frac{5}{9}.
\frac{1}{9}+9
Cancel out 5 and 5.
\frac{1}{9}+\frac{81}{9}
Convert 9 to fraction \frac{81}{9}.
\frac{1+81}{9}
Since \frac{1}{9} and \frac{81}{9} have the same denominator, add them by adding their numerators.
\frac{82}{9}
Add 1 and 81 to get 82.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}