Evaluate
-\frac{39t}{40}+\frac{11}{4}
Expand
-\frac{39t}{40}+\frac{11}{4}
Share
Copied to clipboard
\frac{5}{8}t+\frac{5}{8}\left(-2\right)-\frac{4}{5}\left(2t-5\right)
Use the distributive property to multiply \frac{5}{8} by t-2.
\frac{5}{8}t+\frac{5\left(-2\right)}{8}-\frac{4}{5}\left(2t-5\right)
Express \frac{5}{8}\left(-2\right) as a single fraction.
\frac{5}{8}t+\frac{-10}{8}-\frac{4}{5}\left(2t-5\right)
Multiply 5 and -2 to get -10.
\frac{5}{8}t-\frac{5}{4}-\frac{4}{5}\left(2t-5\right)
Reduce the fraction \frac{-10}{8} to lowest terms by extracting and canceling out 2.
\frac{5}{8}t-\frac{5}{4}-\frac{4}{5}\times 2t-\frac{4}{5}\left(-5\right)
Use the distributive property to multiply -\frac{4}{5} by 2t-5.
\frac{5}{8}t-\frac{5}{4}+\frac{-4\times 2}{5}t-\frac{4}{5}\left(-5\right)
Express -\frac{4}{5}\times 2 as a single fraction.
\frac{5}{8}t-\frac{5}{4}+\frac{-8}{5}t-\frac{4}{5}\left(-5\right)
Multiply -4 and 2 to get -8.
\frac{5}{8}t-\frac{5}{4}-\frac{8}{5}t-\frac{4}{5}\left(-5\right)
Fraction \frac{-8}{5} can be rewritten as -\frac{8}{5} by extracting the negative sign.
\frac{5}{8}t-\frac{5}{4}-\frac{8}{5}t+\frac{-4\left(-5\right)}{5}
Express -\frac{4}{5}\left(-5\right) as a single fraction.
\frac{5}{8}t-\frac{5}{4}-\frac{8}{5}t+\frac{20}{5}
Multiply -4 and -5 to get 20.
\frac{5}{8}t-\frac{5}{4}-\frac{8}{5}t+4
Divide 20 by 5 to get 4.
-\frac{39}{40}t-\frac{5}{4}+4
Combine \frac{5}{8}t and -\frac{8}{5}t to get -\frac{39}{40}t.
-\frac{39}{40}t-\frac{5}{4}+\frac{16}{4}
Convert 4 to fraction \frac{16}{4}.
-\frac{39}{40}t+\frac{-5+16}{4}
Since -\frac{5}{4} and \frac{16}{4} have the same denominator, add them by adding their numerators.
-\frac{39}{40}t+\frac{11}{4}
Add -5 and 16 to get 11.
\frac{5}{8}t+\frac{5}{8}\left(-2\right)-\frac{4}{5}\left(2t-5\right)
Use the distributive property to multiply \frac{5}{8} by t-2.
\frac{5}{8}t+\frac{5\left(-2\right)}{8}-\frac{4}{5}\left(2t-5\right)
Express \frac{5}{8}\left(-2\right) as a single fraction.
\frac{5}{8}t+\frac{-10}{8}-\frac{4}{5}\left(2t-5\right)
Multiply 5 and -2 to get -10.
\frac{5}{8}t-\frac{5}{4}-\frac{4}{5}\left(2t-5\right)
Reduce the fraction \frac{-10}{8} to lowest terms by extracting and canceling out 2.
\frac{5}{8}t-\frac{5}{4}-\frac{4}{5}\times 2t-\frac{4}{5}\left(-5\right)
Use the distributive property to multiply -\frac{4}{5} by 2t-5.
\frac{5}{8}t-\frac{5}{4}+\frac{-4\times 2}{5}t-\frac{4}{5}\left(-5\right)
Express -\frac{4}{5}\times 2 as a single fraction.
\frac{5}{8}t-\frac{5}{4}+\frac{-8}{5}t-\frac{4}{5}\left(-5\right)
Multiply -4 and 2 to get -8.
\frac{5}{8}t-\frac{5}{4}-\frac{8}{5}t-\frac{4}{5}\left(-5\right)
Fraction \frac{-8}{5} can be rewritten as -\frac{8}{5} by extracting the negative sign.
\frac{5}{8}t-\frac{5}{4}-\frac{8}{5}t+\frac{-4\left(-5\right)}{5}
Express -\frac{4}{5}\left(-5\right) as a single fraction.
\frac{5}{8}t-\frac{5}{4}-\frac{8}{5}t+\frac{20}{5}
Multiply -4 and -5 to get 20.
\frac{5}{8}t-\frac{5}{4}-\frac{8}{5}t+4
Divide 20 by 5 to get 4.
-\frac{39}{40}t-\frac{5}{4}+4
Combine \frac{5}{8}t and -\frac{8}{5}t to get -\frac{39}{40}t.
-\frac{39}{40}t-\frac{5}{4}+\frac{16}{4}
Convert 4 to fraction \frac{16}{4}.
-\frac{39}{40}t+\frac{-5+16}{4}
Since -\frac{5}{4} and \frac{16}{4} have the same denominator, add them by adding their numerators.
-\frac{39}{40}t+\frac{11}{4}
Add -5 and 16 to get 11.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}