Solve for p
p=\frac{1}{2}=0.5
Share
Copied to clipboard
\frac{5}{8}p+\frac{5}{8}\times 3-2=\frac{1}{4}\left(2p-3\right)+\frac{11}{16}
Use the distributive property to multiply \frac{5}{8} by p+3.
\frac{5}{8}p+\frac{5\times 3}{8}-2=\frac{1}{4}\left(2p-3\right)+\frac{11}{16}
Express \frac{5}{8}\times 3 as a single fraction.
\frac{5}{8}p+\frac{15}{8}-2=\frac{1}{4}\left(2p-3\right)+\frac{11}{16}
Multiply 5 and 3 to get 15.
\frac{5}{8}p+\frac{15}{8}-\frac{16}{8}=\frac{1}{4}\left(2p-3\right)+\frac{11}{16}
Convert 2 to fraction \frac{16}{8}.
\frac{5}{8}p+\frac{15-16}{8}=\frac{1}{4}\left(2p-3\right)+\frac{11}{16}
Since \frac{15}{8} and \frac{16}{8} have the same denominator, subtract them by subtracting their numerators.
\frac{5}{8}p-\frac{1}{8}=\frac{1}{4}\left(2p-3\right)+\frac{11}{16}
Subtract 16 from 15 to get -1.
\frac{5}{8}p-\frac{1}{8}=\frac{1}{4}\times 2p+\frac{1}{4}\left(-3\right)+\frac{11}{16}
Use the distributive property to multiply \frac{1}{4} by 2p-3.
\frac{5}{8}p-\frac{1}{8}=\frac{2}{4}p+\frac{1}{4}\left(-3\right)+\frac{11}{16}
Multiply \frac{1}{4} and 2 to get \frac{2}{4}.
\frac{5}{8}p-\frac{1}{8}=\frac{1}{2}p+\frac{1}{4}\left(-3\right)+\frac{11}{16}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
\frac{5}{8}p-\frac{1}{8}=\frac{1}{2}p+\frac{-3}{4}+\frac{11}{16}
Multiply \frac{1}{4} and -3 to get \frac{-3}{4}.
\frac{5}{8}p-\frac{1}{8}=\frac{1}{2}p-\frac{3}{4}+\frac{11}{16}
Fraction \frac{-3}{4} can be rewritten as -\frac{3}{4} by extracting the negative sign.
\frac{5}{8}p-\frac{1}{8}=\frac{1}{2}p-\frac{12}{16}+\frac{11}{16}
Least common multiple of 4 and 16 is 16. Convert -\frac{3}{4} and \frac{11}{16} to fractions with denominator 16.
\frac{5}{8}p-\frac{1}{8}=\frac{1}{2}p+\frac{-12+11}{16}
Since -\frac{12}{16} and \frac{11}{16} have the same denominator, add them by adding their numerators.
\frac{5}{8}p-\frac{1}{8}=\frac{1}{2}p-\frac{1}{16}
Add -12 and 11 to get -1.
\frac{5}{8}p-\frac{1}{8}-\frac{1}{2}p=-\frac{1}{16}
Subtract \frac{1}{2}p from both sides.
\frac{1}{8}p-\frac{1}{8}=-\frac{1}{16}
Combine \frac{5}{8}p and -\frac{1}{2}p to get \frac{1}{8}p.
\frac{1}{8}p=-\frac{1}{16}+\frac{1}{8}
Add \frac{1}{8} to both sides.
\frac{1}{8}p=-\frac{1}{16}+\frac{2}{16}
Least common multiple of 16 and 8 is 16. Convert -\frac{1}{16} and \frac{1}{8} to fractions with denominator 16.
\frac{1}{8}p=\frac{-1+2}{16}
Since -\frac{1}{16} and \frac{2}{16} have the same denominator, add them by adding their numerators.
\frac{1}{8}p=\frac{1}{16}
Add -1 and 2 to get 1.
p=\frac{1}{16}\times 8
Multiply both sides by 8, the reciprocal of \frac{1}{8}.
p=\frac{8}{16}
Multiply \frac{1}{16} and 8 to get \frac{8}{16}.
p=\frac{1}{2}
Reduce the fraction \frac{8}{16} to lowest terms by extracting and canceling out 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}