Evaluate
\frac{11}{10}=1.1
Factor
\frac{11}{2 \cdot 5} = 1\frac{1}{10} = 1.1
Share
Copied to clipboard
\frac{5\times 11}{8\times 10}+\frac{\frac{3}{8}}{\frac{10}{11}}
Multiply \frac{5}{8} times \frac{11}{10} by multiplying numerator times numerator and denominator times denominator.
\frac{55}{80}+\frac{\frac{3}{8}}{\frac{10}{11}}
Do the multiplications in the fraction \frac{5\times 11}{8\times 10}.
\frac{11}{16}+\frac{\frac{3}{8}}{\frac{10}{11}}
Reduce the fraction \frac{55}{80} to lowest terms by extracting and canceling out 5.
\frac{11}{16}+\frac{3}{8}\times \frac{11}{10}
Divide \frac{3}{8} by \frac{10}{11} by multiplying \frac{3}{8} by the reciprocal of \frac{10}{11}.
\frac{11}{16}+\frac{3\times 11}{8\times 10}
Multiply \frac{3}{8} times \frac{11}{10} by multiplying numerator times numerator and denominator times denominator.
\frac{11}{16}+\frac{33}{80}
Do the multiplications in the fraction \frac{3\times 11}{8\times 10}.
\frac{55}{80}+\frac{33}{80}
Least common multiple of 16 and 80 is 80. Convert \frac{11}{16} and \frac{33}{80} to fractions with denominator 80.
\frac{55+33}{80}
Since \frac{55}{80} and \frac{33}{80} have the same denominator, add them by adding their numerators.
\frac{88}{80}
Add 55 and 33 to get 88.
\frac{11}{10}
Reduce the fraction \frac{88}{80} to lowest terms by extracting and canceling out 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}