Verify
false
Share
Copied to clipboard
\frac{5-2}{7}+\frac{3}{4}=\frac{5}{7}
Since \frac{5}{7} and \frac{2}{7} have the same denominator, subtract them by subtracting their numerators.
\frac{3}{7}+\frac{3}{4}=\frac{5}{7}
Subtract 2 from 5 to get 3.
\frac{12}{28}+\frac{21}{28}=\frac{5}{7}
Least common multiple of 7 and 4 is 28. Convert \frac{3}{7} and \frac{3}{4} to fractions with denominator 28.
\frac{12+21}{28}=\frac{5}{7}
Since \frac{12}{28} and \frac{21}{28} have the same denominator, add them by adding their numerators.
\frac{33}{28}=\frac{5}{7}
Add 12 and 21 to get 33.
\frac{33}{28}=\frac{20}{28}
Least common multiple of 28 and 7 is 28. Convert \frac{33}{28} and \frac{5}{7} to fractions with denominator 28.
\text{false}
Compare \frac{33}{28} and \frac{20}{28}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}