Evaluate
\frac{40}{21}\approx 1.904761905
Factor
\frac{2 ^ {3} \cdot 5}{3 \cdot 7} = 1\frac{19}{21} = 1.9047619047619047
Share
Copied to clipboard
\frac{5\times 1}{7\times 3}+\frac{5}{7}\times \frac{8}{9}-\frac{2}{9}\times \frac{5}{7}+\frac{5}{7}\times \frac{1\times 3+2}{3}
Multiply \frac{5}{7} times \frac{1}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{5}{21}+\frac{5}{7}\times \frac{8}{9}-\frac{2}{9}\times \frac{5}{7}+\frac{5}{7}\times \frac{1\times 3+2}{3}
Do the multiplications in the fraction \frac{5\times 1}{7\times 3}.
\frac{5}{21}+\frac{5\times 8}{7\times 9}-\frac{2}{9}\times \frac{5}{7}+\frac{5}{7}\times \frac{1\times 3+2}{3}
Multiply \frac{5}{7} times \frac{8}{9} by multiplying numerator times numerator and denominator times denominator.
\frac{5}{21}+\frac{40}{63}-\frac{2}{9}\times \frac{5}{7}+\frac{5}{7}\times \frac{1\times 3+2}{3}
Do the multiplications in the fraction \frac{5\times 8}{7\times 9}.
\frac{15}{63}+\frac{40}{63}-\frac{2}{9}\times \frac{5}{7}+\frac{5}{7}\times \frac{1\times 3+2}{3}
Least common multiple of 21 and 63 is 63. Convert \frac{5}{21} and \frac{40}{63} to fractions with denominator 63.
\frac{15+40}{63}-\frac{2}{9}\times \frac{5}{7}+\frac{5}{7}\times \frac{1\times 3+2}{3}
Since \frac{15}{63} and \frac{40}{63} have the same denominator, add them by adding their numerators.
\frac{55}{63}-\frac{2}{9}\times \frac{5}{7}+\frac{5}{7}\times \frac{1\times 3+2}{3}
Add 15 and 40 to get 55.
\frac{55}{63}-\frac{2\times 5}{9\times 7}+\frac{5}{7}\times \frac{1\times 3+2}{3}
Multiply \frac{2}{9} times \frac{5}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{55}{63}-\frac{10}{63}+\frac{5}{7}\times \frac{1\times 3+2}{3}
Do the multiplications in the fraction \frac{2\times 5}{9\times 7}.
\frac{55-10}{63}+\frac{5}{7}\times \frac{1\times 3+2}{3}
Since \frac{55}{63} and \frac{10}{63} have the same denominator, subtract them by subtracting their numerators.
\frac{45}{63}+\frac{5}{7}\times \frac{1\times 3+2}{3}
Subtract 10 from 55 to get 45.
\frac{5}{7}+\frac{5}{7}\times \frac{1\times 3+2}{3}
Reduce the fraction \frac{45}{63} to lowest terms by extracting and canceling out 9.
\frac{5}{7}+\frac{5}{7}\times \frac{3+2}{3}
Multiply 1 and 3 to get 3.
\frac{5}{7}+\frac{5}{7}\times \frac{5}{3}
Add 3 and 2 to get 5.
\frac{5}{7}+\frac{5\times 5}{7\times 3}
Multiply \frac{5}{7} times \frac{5}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{5}{7}+\frac{25}{21}
Do the multiplications in the fraction \frac{5\times 5}{7\times 3}.
\frac{15}{21}+\frac{25}{21}
Least common multiple of 7 and 21 is 21. Convert \frac{5}{7} and \frac{25}{21} to fractions with denominator 21.
\frac{15+25}{21}
Since \frac{15}{21} and \frac{25}{21} have the same denominator, add them by adding their numerators.
\frac{40}{21}
Add 15 and 25 to get 40.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}