Evaluate
\frac{324}{91}\approx 3.56043956
Factor
\frac{2 ^ {2} \cdot 3 ^ {4}}{7 \cdot 13} = 3\frac{51}{91} = 3.5604395604395602
Share
Copied to clipboard
\frac{\frac{\frac{5}{7}\times 6}{\frac{1}{2}\times 5}\left(\frac{7}{8}+\frac{13}{16}\right)}{\frac{13}{16}}
Divide \frac{\frac{5}{7}}{\frac{1}{2}} by \frac{5}{6} by multiplying \frac{\frac{5}{7}}{\frac{1}{2}} by the reciprocal of \frac{5}{6}.
\frac{\frac{\frac{5\times 6}{7}}{\frac{1}{2}\times 5}\left(\frac{7}{8}+\frac{13}{16}\right)}{\frac{13}{16}}
Express \frac{5}{7}\times 6 as a single fraction.
\frac{\frac{\frac{30}{7}}{\frac{1}{2}\times 5}\left(\frac{7}{8}+\frac{13}{16}\right)}{\frac{13}{16}}
Multiply 5 and 6 to get 30.
\frac{\frac{\frac{30}{7}}{\frac{5}{2}}\left(\frac{7}{8}+\frac{13}{16}\right)}{\frac{13}{16}}
Multiply \frac{1}{2} and 5 to get \frac{5}{2}.
\frac{\frac{30}{7}\times \frac{2}{5}\left(\frac{7}{8}+\frac{13}{16}\right)}{\frac{13}{16}}
Divide \frac{30}{7} by \frac{5}{2} by multiplying \frac{30}{7} by the reciprocal of \frac{5}{2}.
\frac{\frac{30\times 2}{7\times 5}\left(\frac{7}{8}+\frac{13}{16}\right)}{\frac{13}{16}}
Multiply \frac{30}{7} times \frac{2}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{60}{35}\left(\frac{7}{8}+\frac{13}{16}\right)}{\frac{13}{16}}
Do the multiplications in the fraction \frac{30\times 2}{7\times 5}.
\frac{\frac{12}{7}\left(\frac{7}{8}+\frac{13}{16}\right)}{\frac{13}{16}}
Reduce the fraction \frac{60}{35} to lowest terms by extracting and canceling out 5.
\frac{\frac{12}{7}\left(\frac{14}{16}+\frac{13}{16}\right)}{\frac{13}{16}}
Least common multiple of 8 and 16 is 16. Convert \frac{7}{8} and \frac{13}{16} to fractions with denominator 16.
\frac{\frac{12}{7}\times \frac{14+13}{16}}{\frac{13}{16}}
Since \frac{14}{16} and \frac{13}{16} have the same denominator, add them by adding their numerators.
\frac{\frac{12}{7}\times \frac{27}{16}}{\frac{13}{16}}
Add 14 and 13 to get 27.
\frac{\frac{12\times 27}{7\times 16}}{\frac{13}{16}}
Multiply \frac{12}{7} times \frac{27}{16} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{324}{112}}{\frac{13}{16}}
Do the multiplications in the fraction \frac{12\times 27}{7\times 16}.
\frac{\frac{81}{28}}{\frac{13}{16}}
Reduce the fraction \frac{324}{112} to lowest terms by extracting and canceling out 4.
\frac{81}{28}\times \frac{16}{13}
Divide \frac{81}{28} by \frac{13}{16} by multiplying \frac{81}{28} by the reciprocal of \frac{13}{16}.
\frac{81\times 16}{28\times 13}
Multiply \frac{81}{28} times \frac{16}{13} by multiplying numerator times numerator and denominator times denominator.
\frac{1296}{364}
Do the multiplications in the fraction \frac{81\times 16}{28\times 13}.
\frac{324}{91}
Reduce the fraction \frac{1296}{364} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}