Skip to main content
Solve for c
Tick mark Image

Similar Problems from Web Search

Share

5\left(c-\left(\sqrt{2}-1\right)\right)\left(c-\left(-\sqrt{2}-1\right)\right)=-7\left(c^{2}+2c+1+1\right)
Multiply both sides of the equation by 7\left(c-\left(\sqrt{2}-1\right)\right)\left(c-\left(-\sqrt{2}-1\right)\right), the least common multiple of 7,2-\left(c^{2}+2c+1\right).
5\left(c-\sqrt{2}+1\right)\left(c-\left(-\sqrt{2}-1\right)\right)=-7\left(c^{2}+2c+1+1\right)
To find the opposite of \sqrt{2}-1, find the opposite of each term.
5\left(c-\sqrt{2}+1\right)\left(c+\sqrt{2}+1\right)=-7\left(c^{2}+2c+1+1\right)
To find the opposite of -\sqrt{2}-1, find the opposite of each term.
\left(5c-5\sqrt{2}+5\right)\left(c+\sqrt{2}+1\right)=-7\left(c^{2}+2c+1+1\right)
Use the distributive property to multiply 5 by c-\sqrt{2}+1.
5c^{2}+10c-5\left(\sqrt{2}\right)^{2}+5=-7\left(c^{2}+2c+1+1\right)
Use the distributive property to multiply 5c-5\sqrt{2}+5 by c+\sqrt{2}+1 and combine like terms.
5c^{2}+10c-5\times 2+5=-7\left(c^{2}+2c+1+1\right)
The square of \sqrt{2} is 2.
5c^{2}+10c-10+5=-7\left(c^{2}+2c+1+1\right)
Multiply -5 and 2 to get -10.
5c^{2}+10c-5=-7\left(c^{2}+2c+1+1\right)
Add -10 and 5 to get -5.
5c^{2}+10c-5=-7\left(c^{2}+2c+2\right)
Add 1 and 1 to get 2.
5c^{2}+10c-5=-7c^{2}-14c-14
Use the distributive property to multiply -7 by c^{2}+2c+2.
5c^{2}+10c-5+7c^{2}=-14c-14
Add 7c^{2} to both sides.
12c^{2}+10c-5=-14c-14
Combine 5c^{2} and 7c^{2} to get 12c^{2}.
12c^{2}+10c-5+14c=-14
Add 14c to both sides.
12c^{2}+24c-5=-14
Combine 10c and 14c to get 24c.
12c^{2}+24c-5+14=0
Add 14 to both sides.
12c^{2}+24c+9=0
Add -5 and 14 to get 9.
4c^{2}+8c+3=0
Divide both sides by 3.
a+b=8 ab=4\times 3=12
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 4c^{2}+ac+bc+3. To find a and b, set up a system to be solved.
1,12 2,6 3,4
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 12.
1+12=13 2+6=8 3+4=7
Calculate the sum for each pair.
a=2 b=6
The solution is the pair that gives sum 8.
\left(4c^{2}+2c\right)+\left(6c+3\right)
Rewrite 4c^{2}+8c+3 as \left(4c^{2}+2c\right)+\left(6c+3\right).
2c\left(2c+1\right)+3\left(2c+1\right)
Factor out 2c in the first and 3 in the second group.
\left(2c+1\right)\left(2c+3\right)
Factor out common term 2c+1 by using distributive property.
c=-\frac{1}{2} c=-\frac{3}{2}
To find equation solutions, solve 2c+1=0 and 2c+3=0.
5\left(c-\left(\sqrt{2}-1\right)\right)\left(c-\left(-\sqrt{2}-1\right)\right)=-7\left(c^{2}+2c+1+1\right)
Multiply both sides of the equation by 7\left(c-\left(\sqrt{2}-1\right)\right)\left(c-\left(-\sqrt{2}-1\right)\right), the least common multiple of 7,2-\left(c^{2}+2c+1\right).
5\left(c-\sqrt{2}+1\right)\left(c-\left(-\sqrt{2}-1\right)\right)=-7\left(c^{2}+2c+1+1\right)
To find the opposite of \sqrt{2}-1, find the opposite of each term.
5\left(c-\sqrt{2}+1\right)\left(c+\sqrt{2}+1\right)=-7\left(c^{2}+2c+1+1\right)
To find the opposite of -\sqrt{2}-1, find the opposite of each term.
\left(5c-5\sqrt{2}+5\right)\left(c+\sqrt{2}+1\right)=-7\left(c^{2}+2c+1+1\right)
Use the distributive property to multiply 5 by c-\sqrt{2}+1.
5c^{2}+10c-5\left(\sqrt{2}\right)^{2}+5=-7\left(c^{2}+2c+1+1\right)
Use the distributive property to multiply 5c-5\sqrt{2}+5 by c+\sqrt{2}+1 and combine like terms.
5c^{2}+10c-5\times 2+5=-7\left(c^{2}+2c+1+1\right)
The square of \sqrt{2} is 2.
5c^{2}+10c-10+5=-7\left(c^{2}+2c+1+1\right)
Multiply -5 and 2 to get -10.
5c^{2}+10c-5=-7\left(c^{2}+2c+1+1\right)
Add -10 and 5 to get -5.
5c^{2}+10c-5=-7\left(c^{2}+2c+2\right)
Add 1 and 1 to get 2.
5c^{2}+10c-5=-7c^{2}-14c-14
Use the distributive property to multiply -7 by c^{2}+2c+2.
5c^{2}+10c-5+7c^{2}=-14c-14
Add 7c^{2} to both sides.
12c^{2}+10c-5=-14c-14
Combine 5c^{2} and 7c^{2} to get 12c^{2}.
12c^{2}+10c-5+14c=-14
Add 14c to both sides.
12c^{2}+24c-5=-14
Combine 10c and 14c to get 24c.
12c^{2}+24c-5+14=0
Add 14 to both sides.
12c^{2}+24c+9=0
Add -5 and 14 to get 9.
c=\frac{-24±\sqrt{24^{2}-4\times 12\times 9}}{2\times 12}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 12 for a, 24 for b, and 9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
c=\frac{-24±\sqrt{576-4\times 12\times 9}}{2\times 12}
Square 24.
c=\frac{-24±\sqrt{576-48\times 9}}{2\times 12}
Multiply -4 times 12.
c=\frac{-24±\sqrt{576-432}}{2\times 12}
Multiply -48 times 9.
c=\frac{-24±\sqrt{144}}{2\times 12}
Add 576 to -432.
c=\frac{-24±12}{2\times 12}
Take the square root of 144.
c=\frac{-24±12}{24}
Multiply 2 times 12.
c=-\frac{12}{24}
Now solve the equation c=\frac{-24±12}{24} when ± is plus. Add -24 to 12.
c=-\frac{1}{2}
Reduce the fraction \frac{-12}{24} to lowest terms by extracting and canceling out 12.
c=-\frac{36}{24}
Now solve the equation c=\frac{-24±12}{24} when ± is minus. Subtract 12 from -24.
c=-\frac{3}{2}
Reduce the fraction \frac{-36}{24} to lowest terms by extracting and canceling out 12.
c=-\frac{1}{2} c=-\frac{3}{2}
The equation is now solved.
5\left(c-\left(\sqrt{2}-1\right)\right)\left(c-\left(-\sqrt{2}-1\right)\right)=-7\left(c^{2}+2c+1+1\right)
Multiply both sides of the equation by 7\left(c-\left(\sqrt{2}-1\right)\right)\left(c-\left(-\sqrt{2}-1\right)\right), the least common multiple of 7,2-\left(c^{2}+2c+1\right).
5\left(c-\sqrt{2}+1\right)\left(c-\left(-\sqrt{2}-1\right)\right)=-7\left(c^{2}+2c+1+1\right)
To find the opposite of \sqrt{2}-1, find the opposite of each term.
5\left(c-\sqrt{2}+1\right)\left(c+\sqrt{2}+1\right)=-7\left(c^{2}+2c+1+1\right)
To find the opposite of -\sqrt{2}-1, find the opposite of each term.
\left(5c-5\sqrt{2}+5\right)\left(c+\sqrt{2}+1\right)=-7\left(c^{2}+2c+1+1\right)
Use the distributive property to multiply 5 by c-\sqrt{2}+1.
5c^{2}+10c-5\left(\sqrt{2}\right)^{2}+5=-7\left(c^{2}+2c+1+1\right)
Use the distributive property to multiply 5c-5\sqrt{2}+5 by c+\sqrt{2}+1 and combine like terms.
5c^{2}+10c-5\times 2+5=-7\left(c^{2}+2c+1+1\right)
The square of \sqrt{2} is 2.
5c^{2}+10c-10+5=-7\left(c^{2}+2c+1+1\right)
Multiply -5 and 2 to get -10.
5c^{2}+10c-5=-7\left(c^{2}+2c+1+1\right)
Add -10 and 5 to get -5.
5c^{2}+10c-5=-7\left(c^{2}+2c+2\right)
Add 1 and 1 to get 2.
5c^{2}+10c-5=-7c^{2}-14c-14
Use the distributive property to multiply -7 by c^{2}+2c+2.
5c^{2}+10c-5+7c^{2}=-14c-14
Add 7c^{2} to both sides.
12c^{2}+10c-5=-14c-14
Combine 5c^{2} and 7c^{2} to get 12c^{2}.
12c^{2}+10c-5+14c=-14
Add 14c to both sides.
12c^{2}+24c-5=-14
Combine 10c and 14c to get 24c.
12c^{2}+24c=-14+5
Add 5 to both sides.
12c^{2}+24c=-9
Add -14 and 5 to get -9.
\frac{12c^{2}+24c}{12}=-\frac{9}{12}
Divide both sides by 12.
c^{2}+\frac{24}{12}c=-\frac{9}{12}
Dividing by 12 undoes the multiplication by 12.
c^{2}+2c=-\frac{9}{12}
Divide 24 by 12.
c^{2}+2c=-\frac{3}{4}
Reduce the fraction \frac{-9}{12} to lowest terms by extracting and canceling out 3.
c^{2}+2c+1^{2}=-\frac{3}{4}+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
c^{2}+2c+1=-\frac{3}{4}+1
Square 1.
c^{2}+2c+1=\frac{1}{4}
Add -\frac{3}{4} to 1.
\left(c+1\right)^{2}=\frac{1}{4}
Factor c^{2}+2c+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(c+1\right)^{2}}=\sqrt{\frac{1}{4}}
Take the square root of both sides of the equation.
c+1=\frac{1}{2} c+1=-\frac{1}{2}
Simplify.
c=-\frac{1}{2} c=-\frac{3}{2}
Subtract 1 from both sides of the equation.