Evaluate
\frac{\sqrt{145}}{5}+\frac{5}{7}\approx 3.12260463
Factor
\frac{7 \sqrt{145} + 25}{35} = 3.122604630044173
Share
Copied to clipboard
\frac{5}{7}+\sqrt{\frac{25+4}{5}}
Multiply 5 and 5 to get 25.
\frac{5}{7}+\sqrt{\frac{29}{5}}
Add 25 and 4 to get 29.
\frac{5}{7}+\frac{\sqrt{29}}{\sqrt{5}}
Rewrite the square root of the division \sqrt{\frac{29}{5}} as the division of square roots \frac{\sqrt{29}}{\sqrt{5}}.
\frac{5}{7}+\frac{\sqrt{29}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{29}}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{5}{7}+\frac{\sqrt{29}\sqrt{5}}{5}
The square of \sqrt{5} is 5.
\frac{5}{7}+\frac{\sqrt{145}}{5}
To multiply \sqrt{29} and \sqrt{5}, multiply the numbers under the square root.
\frac{5\times 5}{35}+\frac{7\sqrt{145}}{35}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 7 and 5 is 35. Multiply \frac{5}{7} times \frac{5}{5}. Multiply \frac{\sqrt{145}}{5} times \frac{7}{7}.
\frac{5\times 5+7\sqrt{145}}{35}
Since \frac{5\times 5}{35} and \frac{7\sqrt{145}}{35} have the same denominator, add them by adding their numerators.
\frac{25+7\sqrt{145}}{35}
Do the multiplications in 5\times 5+7\sqrt{145}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}