Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{5\left(7-3\sqrt{2}\right)}{\left(7+3\sqrt{2}\right)\left(7-3\sqrt{2}\right)}
Rationalize the denominator of \frac{5}{7+3\sqrt{2}} by multiplying numerator and denominator by 7-3\sqrt{2}.
\frac{5\left(7-3\sqrt{2}\right)}{7^{2}-\left(3\sqrt{2}\right)^{2}}
Consider \left(7+3\sqrt{2}\right)\left(7-3\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{5\left(7-3\sqrt{2}\right)}{49-\left(3\sqrt{2}\right)^{2}}
Calculate 7 to the power of 2 and get 49.
\frac{5\left(7-3\sqrt{2}\right)}{49-3^{2}\left(\sqrt{2}\right)^{2}}
Expand \left(3\sqrt{2}\right)^{2}.
\frac{5\left(7-3\sqrt{2}\right)}{49-9\left(\sqrt{2}\right)^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{5\left(7-3\sqrt{2}\right)}{49-9\times 2}
The square of \sqrt{2} is 2.
\frac{5\left(7-3\sqrt{2}\right)}{49-18}
Multiply 9 and 2 to get 18.
\frac{5\left(7-3\sqrt{2}\right)}{31}
Subtract 18 from 49 to get 31.
\frac{35-15\sqrt{2}}{31}
Use the distributive property to multiply 5 by 7-3\sqrt{2}.