Evaluate
-\frac{\sqrt{6}}{34}+\frac{161}{340}\approx 0.401485596
Factor
\frac{161 - 10 \sqrt{6}}{340} = 0.4014855958004948
Share
Copied to clipboard
\frac{5}{68}-\frac{3\sqrt{6}}{17\left(\sqrt{6}\right)^{2}}+\frac{2}{5}
Rationalize the denominator of \frac{3}{17\sqrt{6}} by multiplying numerator and denominator by \sqrt{6}.
\frac{5}{68}-\frac{3\sqrt{6}}{17\times 6}+\frac{2}{5}
The square of \sqrt{6} is 6.
\frac{5}{68}-\frac{\sqrt{6}}{2\times 17}+\frac{2}{5}
Cancel out 3 in both numerator and denominator.
\frac{5}{68}-\frac{\sqrt{6}}{34}+\frac{2}{5}
Multiply 2 and 17 to get 34.
\frac{25}{340}-\frac{\sqrt{6}}{34}+\frac{136}{340}
Least common multiple of 68 and 5 is 340. Convert \frac{5}{68} and \frac{2}{5} to fractions with denominator 340.
\frac{25+136}{340}-\frac{\sqrt{6}}{34}
Since \frac{25}{340} and \frac{136}{340} have the same denominator, add them by adding their numerators.
\frac{161}{340}-\frac{\sqrt{6}}{34}
Add 25 and 136 to get 161.
\frac{161}{340}-\frac{10\sqrt{6}}{340}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 340 and 34 is 340. Multiply \frac{\sqrt{6}}{34} times \frac{10}{10}.
\frac{161-10\sqrt{6}}{340}
Since \frac{161}{340} and \frac{10\sqrt{6}}{340} have the same denominator, subtract them by subtracting their numerators.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}