Solve for y
y = \frac{6}{5} = 1\frac{1}{5} = 1.2
Graph
Share
Copied to clipboard
2\times 5+12y\left(-\frac{1}{4}\right)=12y-4\times 2
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 12y, the least common multiple of 6y,4,3y.
10+12y\left(-\frac{1}{4}\right)=12y-4\times 2
Multiply 2 and 5 to get 10.
10-3y=12y-4\times 2
Multiply 12 and -\frac{1}{4} to get -3.
10-3y=12y-8
Multiply -4 and 2 to get -8.
10-3y-12y=-8
Subtract 12y from both sides.
10-15y=-8
Combine -3y and -12y to get -15y.
-15y=-8-10
Subtract 10 from both sides.
-15y=-18
Subtract 10 from -8 to get -18.
y=\frac{-18}{-15}
Divide both sides by -15.
y=\frac{6}{5}
Reduce the fraction \frac{-18}{-15} to lowest terms by extracting and canceling out -3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}