Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{5}{6\left(x+3\right)}+\frac{x+9}{2x}
Factor 6x+18.
\frac{5x}{6x\left(x+3\right)}+\frac{\left(x+9\right)\times 3\left(x+3\right)}{6x\left(x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 6\left(x+3\right) and 2x is 6x\left(x+3\right). Multiply \frac{5}{6\left(x+3\right)} times \frac{x}{x}. Multiply \frac{x+9}{2x} times \frac{3\left(x+3\right)}{3\left(x+3\right)}.
\frac{5x+\left(x+9\right)\times 3\left(x+3\right)}{6x\left(x+3\right)}
Since \frac{5x}{6x\left(x+3\right)} and \frac{\left(x+9\right)\times 3\left(x+3\right)}{6x\left(x+3\right)} have the same denominator, add them by adding their numerators.
\frac{5x+3x^{2}+9x+27x+81}{6x\left(x+3\right)}
Do the multiplications in 5x+\left(x+9\right)\times 3\left(x+3\right).
\frac{41x+3x^{2}+81}{6x\left(x+3\right)}
Combine like terms in 5x+3x^{2}+9x+27x+81.
\frac{3\left(x-\left(-\frac{1}{6}\sqrt{709}-\frac{41}{6}\right)\right)\left(x-\left(\frac{1}{6}\sqrt{709}-\frac{41}{6}\right)\right)}{6x\left(x+3\right)}
Factor the expressions that are not already factored in \frac{41x+3x^{2}+81}{6x\left(x+3\right)}.
\frac{\left(x-\left(-\frac{1}{6}\sqrt{709}-\frac{41}{6}\right)\right)\left(x-\left(\frac{1}{6}\sqrt{709}-\frac{41}{6}\right)\right)}{2x\left(x+3\right)}
Cancel out 3 in both numerator and denominator.
\frac{\left(x-\left(-\frac{1}{6}\sqrt{709}-\frac{41}{6}\right)\right)\left(x-\left(\frac{1}{6}\sqrt{709}-\frac{41}{6}\right)\right)}{2x^{2}+6x}
Expand 2x\left(x+3\right).
\frac{\left(x-\left(-\frac{1}{6}\sqrt{709}\right)-\left(-\frac{41}{6}\right)\right)\left(x-\left(\frac{1}{6}\sqrt{709}-\frac{41}{6}\right)\right)}{2x^{2}+6x}
To find the opposite of -\frac{1}{6}\sqrt{709}-\frac{41}{6}, find the opposite of each term.
\frac{\left(x+\frac{1}{6}\sqrt{709}-\left(-\frac{41}{6}\right)\right)\left(x-\left(\frac{1}{6}\sqrt{709}-\frac{41}{6}\right)\right)}{2x^{2}+6x}
The opposite of -\frac{1}{6}\sqrt{709} is \frac{1}{6}\sqrt{709}.
\frac{\left(x+\frac{1}{6}\sqrt{709}+\frac{41}{6}\right)\left(x-\left(\frac{1}{6}\sqrt{709}-\frac{41}{6}\right)\right)}{2x^{2}+6x}
The opposite of -\frac{41}{6} is \frac{41}{6}.
\frac{\left(x+\frac{1}{6}\sqrt{709}+\frac{41}{6}\right)\left(x-\frac{1}{6}\sqrt{709}-\left(-\frac{41}{6}\right)\right)}{2x^{2}+6x}
To find the opposite of \frac{1}{6}\sqrt{709}-\frac{41}{6}, find the opposite of each term.
\frac{\left(x+\frac{1}{6}\sqrt{709}+\frac{41}{6}\right)\left(x-\frac{1}{6}\sqrt{709}+\frac{41}{6}\right)}{2x^{2}+6x}
The opposite of -\frac{41}{6} is \frac{41}{6}.
\frac{x^{2}+x\left(-\frac{1}{6}\right)\sqrt{709}+x\times \frac{41}{6}+\frac{1}{6}\sqrt{709}x+\frac{1}{6}\sqrt{709}\left(-\frac{1}{6}\right)\sqrt{709}+\frac{1}{6}\sqrt{709}\times \frac{41}{6}+\frac{41}{6}x+\frac{41}{6}\left(-\frac{1}{6}\right)\sqrt{709}+\frac{41}{6}\times \frac{41}{6}}{2x^{2}+6x}
Apply the distributive property by multiplying each term of x+\frac{1}{6}\sqrt{709}+\frac{41}{6} by each term of x-\frac{1}{6}\sqrt{709}+\frac{41}{6}.
\frac{x^{2}+x\left(-\frac{1}{6}\right)\sqrt{709}+x\times \frac{41}{6}+\frac{1}{6}\sqrt{709}x+\frac{1}{6}\times 709\left(-\frac{1}{6}\right)+\frac{1}{6}\sqrt{709}\times \frac{41}{6}+\frac{41}{6}x+\frac{41}{6}\left(-\frac{1}{6}\right)\sqrt{709}+\frac{41}{6}\times \frac{41}{6}}{2x^{2}+6x}
Multiply \sqrt{709} and \sqrt{709} to get 709.
\frac{x^{2}+x\times \frac{41}{6}+\frac{1}{6}\times 709\left(-\frac{1}{6}\right)+\frac{1}{6}\sqrt{709}\times \frac{41}{6}+\frac{41}{6}x+\frac{41}{6}\left(-\frac{1}{6}\right)\sqrt{709}+\frac{41}{6}\times \frac{41}{6}}{2x^{2}+6x}
Combine x\left(-\frac{1}{6}\right)\sqrt{709} and \frac{1}{6}\sqrt{709}x to get 0.
\frac{x^{2}+x\times \frac{41}{6}+\frac{709}{6}\left(-\frac{1}{6}\right)+\frac{1}{6}\sqrt{709}\times \frac{41}{6}+\frac{41}{6}x+\frac{41}{6}\left(-\frac{1}{6}\right)\sqrt{709}+\frac{41}{6}\times \frac{41}{6}}{2x^{2}+6x}
Multiply \frac{1}{6} and 709 to get \frac{709}{6}.
\frac{x^{2}+x\times \frac{41}{6}+\frac{709\left(-1\right)}{6\times 6}+\frac{1}{6}\sqrt{709}\times \frac{41}{6}+\frac{41}{6}x+\frac{41}{6}\left(-\frac{1}{6}\right)\sqrt{709}+\frac{41}{6}\times \frac{41}{6}}{2x^{2}+6x}
Multiply \frac{709}{6} times -\frac{1}{6} by multiplying numerator times numerator and denominator times denominator.
\frac{x^{2}+x\times \frac{41}{6}+\frac{-709}{36}+\frac{1}{6}\sqrt{709}\times \frac{41}{6}+\frac{41}{6}x+\frac{41}{6}\left(-\frac{1}{6}\right)\sqrt{709}+\frac{41}{6}\times \frac{41}{6}}{2x^{2}+6x}
Do the multiplications in the fraction \frac{709\left(-1\right)}{6\times 6}.
\frac{x^{2}+x\times \frac{41}{6}-\frac{709}{36}+\frac{1}{6}\sqrt{709}\times \frac{41}{6}+\frac{41}{6}x+\frac{41}{6}\left(-\frac{1}{6}\right)\sqrt{709}+\frac{41}{6}\times \frac{41}{6}}{2x^{2}+6x}
Fraction \frac{-709}{36} can be rewritten as -\frac{709}{36} by extracting the negative sign.
\frac{x^{2}+x\times \frac{41}{6}-\frac{709}{36}+\frac{1\times 41}{6\times 6}\sqrt{709}+\frac{41}{6}x+\frac{41}{6}\left(-\frac{1}{6}\right)\sqrt{709}+\frac{41}{6}\times \frac{41}{6}}{2x^{2}+6x}
Multiply \frac{1}{6} times \frac{41}{6} by multiplying numerator times numerator and denominator times denominator.
\frac{x^{2}+x\times \frac{41}{6}-\frac{709}{36}+\frac{41}{36}\sqrt{709}+\frac{41}{6}x+\frac{41}{6}\left(-\frac{1}{6}\right)\sqrt{709}+\frac{41}{6}\times \frac{41}{6}}{2x^{2}+6x}
Do the multiplications in the fraction \frac{1\times 41}{6\times 6}.
\frac{x^{2}+\frac{41}{3}x-\frac{709}{36}+\frac{41}{36}\sqrt{709}+\frac{41}{6}\left(-\frac{1}{6}\right)\sqrt{709}+\frac{41}{6}\times \frac{41}{6}}{2x^{2}+6x}
Combine x\times \frac{41}{6} and \frac{41}{6}x to get \frac{41}{3}x.
\frac{x^{2}+\frac{41}{3}x-\frac{709}{36}+\frac{41}{36}\sqrt{709}+\frac{41\left(-1\right)}{6\times 6}\sqrt{709}+\frac{41}{6}\times \frac{41}{6}}{2x^{2}+6x}
Multiply \frac{41}{6} times -\frac{1}{6} by multiplying numerator times numerator and denominator times denominator.
\frac{x^{2}+\frac{41}{3}x-\frac{709}{36}+\frac{41}{36}\sqrt{709}+\frac{-41}{36}\sqrt{709}+\frac{41}{6}\times \frac{41}{6}}{2x^{2}+6x}
Do the multiplications in the fraction \frac{41\left(-1\right)}{6\times 6}.
\frac{x^{2}+\frac{41}{3}x-\frac{709}{36}+\frac{41}{36}\sqrt{709}-\frac{41}{36}\sqrt{709}+\frac{41}{6}\times \frac{41}{6}}{2x^{2}+6x}
Fraction \frac{-41}{36} can be rewritten as -\frac{41}{36} by extracting the negative sign.
\frac{x^{2}+\frac{41}{3}x-\frac{709}{36}+\frac{41}{6}\times \frac{41}{6}}{2x^{2}+6x}
Combine \frac{41}{36}\sqrt{709} and -\frac{41}{36}\sqrt{709} to get 0.
\frac{x^{2}+\frac{41}{3}x-\frac{709}{36}+\frac{41\times 41}{6\times 6}}{2x^{2}+6x}
Multiply \frac{41}{6} times \frac{41}{6} by multiplying numerator times numerator and denominator times denominator.
\frac{x^{2}+\frac{41}{3}x-\frac{709}{36}+\frac{1681}{36}}{2x^{2}+6x}
Do the multiplications in the fraction \frac{41\times 41}{6\times 6}.
\frac{x^{2}+\frac{41}{3}x+\frac{-709+1681}{36}}{2x^{2}+6x}
Since -\frac{709}{36} and \frac{1681}{36} have the same denominator, add them by adding their numerators.
\frac{x^{2}+\frac{41}{3}x+\frac{972}{36}}{2x^{2}+6x}
Add -709 and 1681 to get 972.
\frac{x^{2}+\frac{41}{3}x+27}{2x^{2}+6x}
Divide 972 by 36 to get 27.
\frac{5}{6\left(x+3\right)}+\frac{x+9}{2x}
Factor 6x+18.
\frac{5x}{6x\left(x+3\right)}+\frac{\left(x+9\right)\times 3\left(x+3\right)}{6x\left(x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 6\left(x+3\right) and 2x is 6x\left(x+3\right). Multiply \frac{5}{6\left(x+3\right)} times \frac{x}{x}. Multiply \frac{x+9}{2x} times \frac{3\left(x+3\right)}{3\left(x+3\right)}.
\frac{5x+\left(x+9\right)\times 3\left(x+3\right)}{6x\left(x+3\right)}
Since \frac{5x}{6x\left(x+3\right)} and \frac{\left(x+9\right)\times 3\left(x+3\right)}{6x\left(x+3\right)} have the same denominator, add them by adding their numerators.
\frac{5x+3x^{2}+9x+27x+81}{6x\left(x+3\right)}
Do the multiplications in 5x+\left(x+9\right)\times 3\left(x+3\right).
\frac{41x+3x^{2}+81}{6x\left(x+3\right)}
Combine like terms in 5x+3x^{2}+9x+27x+81.
\frac{3\left(x-\left(-\frac{1}{6}\sqrt{709}-\frac{41}{6}\right)\right)\left(x-\left(\frac{1}{6}\sqrt{709}-\frac{41}{6}\right)\right)}{6x\left(x+3\right)}
Factor the expressions that are not already factored in \frac{41x+3x^{2}+81}{6x\left(x+3\right)}.
\frac{\left(x-\left(-\frac{1}{6}\sqrt{709}-\frac{41}{6}\right)\right)\left(x-\left(\frac{1}{6}\sqrt{709}-\frac{41}{6}\right)\right)}{2x\left(x+3\right)}
Cancel out 3 in both numerator and denominator.
\frac{\left(x-\left(-\frac{1}{6}\sqrt{709}-\frac{41}{6}\right)\right)\left(x-\left(\frac{1}{6}\sqrt{709}-\frac{41}{6}\right)\right)}{2x^{2}+6x}
Expand 2x\left(x+3\right).
\frac{\left(x-\left(-\frac{1}{6}\sqrt{709}\right)-\left(-\frac{41}{6}\right)\right)\left(x-\left(\frac{1}{6}\sqrt{709}-\frac{41}{6}\right)\right)}{2x^{2}+6x}
To find the opposite of -\frac{1}{6}\sqrt{709}-\frac{41}{6}, find the opposite of each term.
\frac{\left(x+\frac{1}{6}\sqrt{709}-\left(-\frac{41}{6}\right)\right)\left(x-\left(\frac{1}{6}\sqrt{709}-\frac{41}{6}\right)\right)}{2x^{2}+6x}
The opposite of -\frac{1}{6}\sqrt{709} is \frac{1}{6}\sqrt{709}.
\frac{\left(x+\frac{1}{6}\sqrt{709}+\frac{41}{6}\right)\left(x-\left(\frac{1}{6}\sqrt{709}-\frac{41}{6}\right)\right)}{2x^{2}+6x}
The opposite of -\frac{41}{6} is \frac{41}{6}.
\frac{\left(x+\frac{1}{6}\sqrt{709}+\frac{41}{6}\right)\left(x-\frac{1}{6}\sqrt{709}-\left(-\frac{41}{6}\right)\right)}{2x^{2}+6x}
To find the opposite of \frac{1}{6}\sqrt{709}-\frac{41}{6}, find the opposite of each term.
\frac{\left(x+\frac{1}{6}\sqrt{709}+\frac{41}{6}\right)\left(x-\frac{1}{6}\sqrt{709}+\frac{41}{6}\right)}{2x^{2}+6x}
The opposite of -\frac{41}{6} is \frac{41}{6}.
\frac{x^{2}+x\left(-\frac{1}{6}\right)\sqrt{709}+x\times \frac{41}{6}+\frac{1}{6}\sqrt{709}x+\frac{1}{6}\sqrt{709}\left(-\frac{1}{6}\right)\sqrt{709}+\frac{1}{6}\sqrt{709}\times \frac{41}{6}+\frac{41}{6}x+\frac{41}{6}\left(-\frac{1}{6}\right)\sqrt{709}+\frac{41}{6}\times \frac{41}{6}}{2x^{2}+6x}
Apply the distributive property by multiplying each term of x+\frac{1}{6}\sqrt{709}+\frac{41}{6} by each term of x-\frac{1}{6}\sqrt{709}+\frac{41}{6}.
\frac{x^{2}+x\left(-\frac{1}{6}\right)\sqrt{709}+x\times \frac{41}{6}+\frac{1}{6}\sqrt{709}x+\frac{1}{6}\times 709\left(-\frac{1}{6}\right)+\frac{1}{6}\sqrt{709}\times \frac{41}{6}+\frac{41}{6}x+\frac{41}{6}\left(-\frac{1}{6}\right)\sqrt{709}+\frac{41}{6}\times \frac{41}{6}}{2x^{2}+6x}
Multiply \sqrt{709} and \sqrt{709} to get 709.
\frac{x^{2}+x\times \frac{41}{6}+\frac{1}{6}\times 709\left(-\frac{1}{6}\right)+\frac{1}{6}\sqrt{709}\times \frac{41}{6}+\frac{41}{6}x+\frac{41}{6}\left(-\frac{1}{6}\right)\sqrt{709}+\frac{41}{6}\times \frac{41}{6}}{2x^{2}+6x}
Combine x\left(-\frac{1}{6}\right)\sqrt{709} and \frac{1}{6}\sqrt{709}x to get 0.
\frac{x^{2}+x\times \frac{41}{6}+\frac{709}{6}\left(-\frac{1}{6}\right)+\frac{1}{6}\sqrt{709}\times \frac{41}{6}+\frac{41}{6}x+\frac{41}{6}\left(-\frac{1}{6}\right)\sqrt{709}+\frac{41}{6}\times \frac{41}{6}}{2x^{2}+6x}
Multiply \frac{1}{6} and 709 to get \frac{709}{6}.
\frac{x^{2}+x\times \frac{41}{6}+\frac{709\left(-1\right)}{6\times 6}+\frac{1}{6}\sqrt{709}\times \frac{41}{6}+\frac{41}{6}x+\frac{41}{6}\left(-\frac{1}{6}\right)\sqrt{709}+\frac{41}{6}\times \frac{41}{6}}{2x^{2}+6x}
Multiply \frac{709}{6} times -\frac{1}{6} by multiplying numerator times numerator and denominator times denominator.
\frac{x^{2}+x\times \frac{41}{6}+\frac{-709}{36}+\frac{1}{6}\sqrt{709}\times \frac{41}{6}+\frac{41}{6}x+\frac{41}{6}\left(-\frac{1}{6}\right)\sqrt{709}+\frac{41}{6}\times \frac{41}{6}}{2x^{2}+6x}
Do the multiplications in the fraction \frac{709\left(-1\right)}{6\times 6}.
\frac{x^{2}+x\times \frac{41}{6}-\frac{709}{36}+\frac{1}{6}\sqrt{709}\times \frac{41}{6}+\frac{41}{6}x+\frac{41}{6}\left(-\frac{1}{6}\right)\sqrt{709}+\frac{41}{6}\times \frac{41}{6}}{2x^{2}+6x}
Fraction \frac{-709}{36} can be rewritten as -\frac{709}{36} by extracting the negative sign.
\frac{x^{2}+x\times \frac{41}{6}-\frac{709}{36}+\frac{1\times 41}{6\times 6}\sqrt{709}+\frac{41}{6}x+\frac{41}{6}\left(-\frac{1}{6}\right)\sqrt{709}+\frac{41}{6}\times \frac{41}{6}}{2x^{2}+6x}
Multiply \frac{1}{6} times \frac{41}{6} by multiplying numerator times numerator and denominator times denominator.
\frac{x^{2}+x\times \frac{41}{6}-\frac{709}{36}+\frac{41}{36}\sqrt{709}+\frac{41}{6}x+\frac{41}{6}\left(-\frac{1}{6}\right)\sqrt{709}+\frac{41}{6}\times \frac{41}{6}}{2x^{2}+6x}
Do the multiplications in the fraction \frac{1\times 41}{6\times 6}.
\frac{x^{2}+\frac{41}{3}x-\frac{709}{36}+\frac{41}{36}\sqrt{709}+\frac{41}{6}\left(-\frac{1}{6}\right)\sqrt{709}+\frac{41}{6}\times \frac{41}{6}}{2x^{2}+6x}
Combine x\times \frac{41}{6} and \frac{41}{6}x to get \frac{41}{3}x.
\frac{x^{2}+\frac{41}{3}x-\frac{709}{36}+\frac{41}{36}\sqrt{709}+\frac{41\left(-1\right)}{6\times 6}\sqrt{709}+\frac{41}{6}\times \frac{41}{6}}{2x^{2}+6x}
Multiply \frac{41}{6} times -\frac{1}{6} by multiplying numerator times numerator and denominator times denominator.
\frac{x^{2}+\frac{41}{3}x-\frac{709}{36}+\frac{41}{36}\sqrt{709}+\frac{-41}{36}\sqrt{709}+\frac{41}{6}\times \frac{41}{6}}{2x^{2}+6x}
Do the multiplications in the fraction \frac{41\left(-1\right)}{6\times 6}.
\frac{x^{2}+\frac{41}{3}x-\frac{709}{36}+\frac{41}{36}\sqrt{709}-\frac{41}{36}\sqrt{709}+\frac{41}{6}\times \frac{41}{6}}{2x^{2}+6x}
Fraction \frac{-41}{36} can be rewritten as -\frac{41}{36} by extracting the negative sign.
\frac{x^{2}+\frac{41}{3}x-\frac{709}{36}+\frac{41}{6}\times \frac{41}{6}}{2x^{2}+6x}
Combine \frac{41}{36}\sqrt{709} and -\frac{41}{36}\sqrt{709} to get 0.
\frac{x^{2}+\frac{41}{3}x-\frac{709}{36}+\frac{41\times 41}{6\times 6}}{2x^{2}+6x}
Multiply \frac{41}{6} times \frac{41}{6} by multiplying numerator times numerator and denominator times denominator.
\frac{x^{2}+\frac{41}{3}x-\frac{709}{36}+\frac{1681}{36}}{2x^{2}+6x}
Do the multiplications in the fraction \frac{41\times 41}{6\times 6}.
\frac{x^{2}+\frac{41}{3}x+\frac{-709+1681}{36}}{2x^{2}+6x}
Since -\frac{709}{36} and \frac{1681}{36} have the same denominator, add them by adding their numerators.
\frac{x^{2}+\frac{41}{3}x+\frac{972}{36}}{2x^{2}+6x}
Add -709 and 1681 to get 972.
\frac{x^{2}+\frac{41}{3}x+27}{2x^{2}+6x}
Divide 972 by 36 to get 27.