Solve for y
y=12
Graph
Share
Copied to clipboard
\frac{5}{6}y-\frac{3}{8}\times 20-\frac{3}{8}\left(-1\right)y=7
Use the distributive property to multiply -\frac{3}{8} by 20-y.
\frac{5}{6}y+\frac{-3\times 20}{8}-\frac{3}{8}\left(-1\right)y=7
Express -\frac{3}{8}\times 20 as a single fraction.
\frac{5}{6}y+\frac{-60}{8}-\frac{3}{8}\left(-1\right)y=7
Multiply -3 and 20 to get -60.
\frac{5}{6}y-\frac{15}{2}-\frac{3}{8}\left(-1\right)y=7
Reduce the fraction \frac{-60}{8} to lowest terms by extracting and canceling out 4.
\frac{5}{6}y-\frac{15}{2}+\frac{3}{8}y=7
Multiply -\frac{3}{8} and -1 to get \frac{3}{8}.
\frac{29}{24}y-\frac{15}{2}=7
Combine \frac{5}{6}y and \frac{3}{8}y to get \frac{29}{24}y.
\frac{29}{24}y=7+\frac{15}{2}
Add \frac{15}{2} to both sides.
\frac{29}{24}y=\frac{14}{2}+\frac{15}{2}
Convert 7 to fraction \frac{14}{2}.
\frac{29}{24}y=\frac{14+15}{2}
Since \frac{14}{2} and \frac{15}{2} have the same denominator, add them by adding their numerators.
\frac{29}{24}y=\frac{29}{2}
Add 14 and 15 to get 29.
y=\frac{29}{2}\times \frac{24}{29}
Multiply both sides by \frac{24}{29}, the reciprocal of \frac{29}{24}.
y=\frac{29\times 24}{2\times 29}
Multiply \frac{29}{2} times \frac{24}{29} by multiplying numerator times numerator and denominator times denominator.
y=\frac{24}{2}
Cancel out 29 in both numerator and denominator.
y=12
Divide 24 by 2 to get 12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}