Solve for x
x>\frac{18}{5}
Graph
Share
Copied to clipboard
\frac{5}{6}x-\frac{2}{5}-\frac{3}{4}x>-\frac{1}{10}
Subtract \frac{3}{4}x from both sides.
\frac{1}{12}x-\frac{2}{5}>-\frac{1}{10}
Combine \frac{5}{6}x and -\frac{3}{4}x to get \frac{1}{12}x.
\frac{1}{12}x>-\frac{1}{10}+\frac{2}{5}
Add \frac{2}{5} to both sides.
\frac{1}{12}x>-\frac{1}{10}+\frac{4}{10}
Least common multiple of 10 and 5 is 10. Convert -\frac{1}{10} and \frac{2}{5} to fractions with denominator 10.
\frac{1}{12}x>\frac{-1+4}{10}
Since -\frac{1}{10} and \frac{4}{10} have the same denominator, add them by adding their numerators.
\frac{1}{12}x>\frac{3}{10}
Add -1 and 4 to get 3.
x>\frac{3}{10}\times 12
Multiply both sides by 12, the reciprocal of \frac{1}{12}. Since \frac{1}{12} is positive, the inequality direction remains the same.
x>\frac{3\times 12}{10}
Express \frac{3}{10}\times 12 as a single fraction.
x>\frac{36}{10}
Multiply 3 and 12 to get 36.
x>\frac{18}{5}
Reduce the fraction \frac{36}{10} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}