Solve for m
m = \frac{26}{17} = 1\frac{9}{17} \approx 1.529411765
Share
Copied to clipboard
\frac{5}{6}m-\frac{5}{12}-\frac{1}{8}m=\frac{2}{3}
Subtract \frac{1}{8}m from both sides.
\frac{17}{24}m-\frac{5}{12}=\frac{2}{3}
Combine \frac{5}{6}m and -\frac{1}{8}m to get \frac{17}{24}m.
\frac{17}{24}m=\frac{2}{3}+\frac{5}{12}
Add \frac{5}{12} to both sides.
\frac{17}{24}m=\frac{8}{12}+\frac{5}{12}
Least common multiple of 3 and 12 is 12. Convert \frac{2}{3} and \frac{5}{12} to fractions with denominator 12.
\frac{17}{24}m=\frac{8+5}{12}
Since \frac{8}{12} and \frac{5}{12} have the same denominator, add them by adding their numerators.
\frac{17}{24}m=\frac{13}{12}
Add 8 and 5 to get 13.
m=\frac{13}{12}\times \frac{24}{17}
Multiply both sides by \frac{24}{17}, the reciprocal of \frac{17}{24}.
m=\frac{13\times 24}{12\times 17}
Multiply \frac{13}{12} times \frac{24}{17} by multiplying numerator times numerator and denominator times denominator.
m=\frac{312}{204}
Do the multiplications in the fraction \frac{13\times 24}{12\times 17}.
m=\frac{26}{17}
Reduce the fraction \frac{312}{204} to lowest terms by extracting and canceling out 12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}