Evaluate
\frac{41}{24}\approx 1.708333333
Factor
\frac{41}{2 ^ {3} \cdot 3} = 1\frac{17}{24} = 1.7083333333333333
Share
Copied to clipboard
\frac{5}{6}-\left(\frac{2}{5}\times \left(\frac{5}{2}\right)^{2}-\sqrt{\frac{9}{16}}\times \frac{1}{2}\right)+3
Calculate \frac{2}{5} to the power of 1 and get \frac{2}{5}.
\frac{5}{6}-\left(\frac{2}{5}\times \frac{25}{4}-\sqrt{\frac{9}{16}}\times \frac{1}{2}\right)+3
Calculate \frac{5}{2} to the power of 2 and get \frac{25}{4}.
\frac{5}{6}-\left(\frac{2\times 25}{5\times 4}-\sqrt{\frac{9}{16}}\times \frac{1}{2}\right)+3
Multiply \frac{2}{5} times \frac{25}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{5}{6}-\left(\frac{50}{20}-\sqrt{\frac{9}{16}}\times \frac{1}{2}\right)+3
Do the multiplications in the fraction \frac{2\times 25}{5\times 4}.
\frac{5}{6}-\left(\frac{5}{2}-\sqrt{\frac{9}{16}}\times \frac{1}{2}\right)+3
Reduce the fraction \frac{50}{20} to lowest terms by extracting and canceling out 10.
\frac{5}{6}-\left(\frac{5}{2}-\frac{3}{4}\times \frac{1}{2}\right)+3
Rewrite the square root of the division \frac{9}{16} as the division of square roots \frac{\sqrt{9}}{\sqrt{16}}. Take the square root of both numerator and denominator.
\frac{5}{6}-\left(\frac{5}{2}-\frac{3\times 1}{4\times 2}\right)+3
Multiply \frac{3}{4} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{5}{6}-\left(\frac{5}{2}-\frac{3}{8}\right)+3
Do the multiplications in the fraction \frac{3\times 1}{4\times 2}.
\frac{5}{6}-\left(\frac{20}{8}-\frac{3}{8}\right)+3
Least common multiple of 2 and 8 is 8. Convert \frac{5}{2} and \frac{3}{8} to fractions with denominator 8.
\frac{5}{6}-\frac{20-3}{8}+3
Since \frac{20}{8} and \frac{3}{8} have the same denominator, subtract them by subtracting their numerators.
\frac{5}{6}-\frac{17}{8}+3
Subtract 3 from 20 to get 17.
\frac{20}{24}-\frac{51}{24}+3
Least common multiple of 6 and 8 is 24. Convert \frac{5}{6} and \frac{17}{8} to fractions with denominator 24.
\frac{20-51}{24}+3
Since \frac{20}{24} and \frac{51}{24} have the same denominator, subtract them by subtracting their numerators.
-\frac{31}{24}+3
Subtract 51 from 20 to get -31.
-\frac{31}{24}+\frac{72}{24}
Convert 3 to fraction \frac{72}{24}.
\frac{-31+72}{24}
Since -\frac{31}{24} and \frac{72}{24} have the same denominator, add them by adding their numerators.
\frac{41}{24}
Add -31 and 72 to get 41.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}