Solve for A
A=\frac{5\left(B-C\right)}{6}
Solve for B
B=\frac{6A}{5}+C
Share
Copied to clipboard
\frac{5}{6}B-\frac{5}{6}C=A
Use the distributive property to multiply \frac{5}{6} by B-C.
A=\frac{5}{6}B-\frac{5}{6}C
Swap sides so that all variable terms are on the left hand side.
\frac{5}{6}B-\frac{5}{6}C=A
Use the distributive property to multiply \frac{5}{6} by B-C.
\frac{5}{6}B=A+\frac{5}{6}C
Add \frac{5}{6}C to both sides.
\frac{5}{6}B=\frac{5C}{6}+A
The equation is in standard form.
\frac{\frac{5}{6}B}{\frac{5}{6}}=\frac{\frac{5C}{6}+A}{\frac{5}{6}}
Divide both sides of the equation by \frac{5}{6}, which is the same as multiplying both sides by the reciprocal of the fraction.
B=\frac{\frac{5C}{6}+A}{\frac{5}{6}}
Dividing by \frac{5}{6} undoes the multiplication by \frac{5}{6}.
B=\frac{6A}{5}+C
Divide A+\frac{5C}{6} by \frac{5}{6} by multiplying A+\frac{5C}{6} by the reciprocal of \frac{5}{6}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}