Solve for x
x=0
Graph
Share
Copied to clipboard
\frac{5}{6}\times 2x+\frac{5}{6}\times 14=\frac{7}{12}\left(3x+20\right)
Use the distributive property to multiply \frac{5}{6} by 2x+14.
\frac{5\times 2}{6}x+\frac{5}{6}\times 14=\frac{7}{12}\left(3x+20\right)
Express \frac{5}{6}\times 2 as a single fraction.
\frac{10}{6}x+\frac{5}{6}\times 14=\frac{7}{12}\left(3x+20\right)
Multiply 5 and 2 to get 10.
\frac{5}{3}x+\frac{5}{6}\times 14=\frac{7}{12}\left(3x+20\right)
Reduce the fraction \frac{10}{6} to lowest terms by extracting and canceling out 2.
\frac{5}{3}x+\frac{5\times 14}{6}=\frac{7}{12}\left(3x+20\right)
Express \frac{5}{6}\times 14 as a single fraction.
\frac{5}{3}x+\frac{70}{6}=\frac{7}{12}\left(3x+20\right)
Multiply 5 and 14 to get 70.
\frac{5}{3}x+\frac{35}{3}=\frac{7}{12}\left(3x+20\right)
Reduce the fraction \frac{70}{6} to lowest terms by extracting and canceling out 2.
\frac{5}{3}x+\frac{35}{3}=\frac{7}{12}\times 3x+\frac{7}{12}\times 20
Use the distributive property to multiply \frac{7}{12} by 3x+20.
\frac{5}{3}x+\frac{35}{3}=\frac{7\times 3}{12}x+\frac{7}{12}\times 20
Express \frac{7}{12}\times 3 as a single fraction.
\frac{5}{3}x+\frac{35}{3}=\frac{21}{12}x+\frac{7}{12}\times 20
Multiply 7 and 3 to get 21.
\frac{5}{3}x+\frac{35}{3}=\frac{7}{4}x+\frac{7}{12}\times 20
Reduce the fraction \frac{21}{12} to lowest terms by extracting and canceling out 3.
\frac{5}{3}x+\frac{35}{3}=\frac{7}{4}x+\frac{7\times 20}{12}
Express \frac{7}{12}\times 20 as a single fraction.
\frac{5}{3}x+\frac{35}{3}=\frac{7}{4}x+\frac{140}{12}
Multiply 7 and 20 to get 140.
\frac{5}{3}x+\frac{35}{3}=\frac{7}{4}x+\frac{35}{3}
Reduce the fraction \frac{140}{12} to lowest terms by extracting and canceling out 4.
\frac{5}{3}x+\frac{35}{3}-\frac{7}{4}x=\frac{35}{3}
Subtract \frac{7}{4}x from both sides.
-\frac{1}{12}x+\frac{35}{3}=\frac{35}{3}
Combine \frac{5}{3}x and -\frac{7}{4}x to get -\frac{1}{12}x.
-\frac{1}{12}x=\frac{35}{3}-\frac{35}{3}
Subtract \frac{35}{3} from both sides.
-\frac{1}{12}x=0
Subtract \frac{35}{3} from \frac{35}{3} to get 0.
x=0
Product of two numbers is equal to 0 if at least one of them is 0. Since -\frac{1}{12} is not equal to 0, x must be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}