Solve for x
x<-\frac{14}{45}
Graph
Share
Copied to clipboard
\frac{5\left(-2\right)}{6\times 5}>\frac{3}{4}x-\frac{1}{10}
Multiply \frac{5}{6} times -\frac{2}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{-2}{6}>\frac{3}{4}x-\frac{1}{10}
Cancel out 5 in both numerator and denominator.
-\frac{1}{3}>\frac{3}{4}x-\frac{1}{10}
Reduce the fraction \frac{-2}{6} to lowest terms by extracting and canceling out 2.
\frac{3}{4}x-\frac{1}{10}<-\frac{1}{3}
Swap sides so that all variable terms are on the left hand side. This changes the sign direction.
\frac{3}{4}x<-\frac{1}{3}+\frac{1}{10}
Add \frac{1}{10} to both sides.
\frac{3}{4}x<-\frac{10}{30}+\frac{3}{30}
Least common multiple of 3 and 10 is 30. Convert -\frac{1}{3} and \frac{1}{10} to fractions with denominator 30.
\frac{3}{4}x<\frac{-10+3}{30}
Since -\frac{10}{30} and \frac{3}{30} have the same denominator, add them by adding their numerators.
\frac{3}{4}x<-\frac{7}{30}
Add -10 and 3 to get -7.
x<-\frac{7}{30}\times \frac{4}{3}
Multiply both sides by \frac{4}{3}, the reciprocal of \frac{3}{4}. Since \frac{3}{4} is positive, the inequality direction remains the same.
x<\frac{-7\times 4}{30\times 3}
Multiply -\frac{7}{30} times \frac{4}{3} by multiplying numerator times numerator and denominator times denominator.
x<\frac{-28}{90}
Do the multiplications in the fraction \frac{-7\times 4}{30\times 3}.
x<-\frac{14}{45}
Reduce the fraction \frac{-28}{90} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}