Evaluate
\frac{175}{48}\approx 3.645833333
Factor
\frac{5 ^ {2} \cdot 7}{2 ^ {4} \cdot 3} = 3\frac{31}{48} = 3.6458333333333335
Share
Copied to clipboard
\frac{5}{6}\left(\frac{14}{8}-\frac{3}{8}\right)+\frac{5}{2}
Least common multiple of 4 and 8 is 8. Convert \frac{7}{4} and \frac{3}{8} to fractions with denominator 8.
\frac{5}{6}\times \frac{14-3}{8}+\frac{5}{2}
Since \frac{14}{8} and \frac{3}{8} have the same denominator, subtract them by subtracting their numerators.
\frac{5}{6}\times \frac{11}{8}+\frac{5}{2}
Subtract 3 from 14 to get 11.
\frac{5\times 11}{6\times 8}+\frac{5}{2}
Multiply \frac{5}{6} times \frac{11}{8} by multiplying numerator times numerator and denominator times denominator.
\frac{55}{48}+\frac{5}{2}
Do the multiplications in the fraction \frac{5\times 11}{6\times 8}.
\frac{55}{48}+\frac{120}{48}
Least common multiple of 48 and 2 is 48. Convert \frac{55}{48} and \frac{5}{2} to fractions with denominator 48.
\frac{55+120}{48}
Since \frac{55}{48} and \frac{120}{48} have the same denominator, add them by adding their numerators.
\frac{175}{48}
Add 55 and 120 to get 175.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}