Solve for n
n=\frac{1}{2}=0.5
Share
Copied to clipboard
\frac{5}{6}\times 9=7n+4
Multiply both sides by 9.
\frac{5\times 9}{6}=7n+4
Express \frac{5}{6}\times 9 as a single fraction.
\frac{45}{6}=7n+4
Multiply 5 and 9 to get 45.
\frac{15}{2}=7n+4
Reduce the fraction \frac{45}{6} to lowest terms by extracting and canceling out 3.
7n+4=\frac{15}{2}
Swap sides so that all variable terms are on the left hand side.
7n=\frac{15}{2}-4
Subtract 4 from both sides.
7n=\frac{15}{2}-\frac{8}{2}
Convert 4 to fraction \frac{8}{2}.
7n=\frac{15-8}{2}
Since \frac{15}{2} and \frac{8}{2} have the same denominator, subtract them by subtracting their numerators.
7n=\frac{7}{2}
Subtract 8 from 15 to get 7.
n=\frac{\frac{7}{2}}{7}
Divide both sides by 7.
n=\frac{7}{2\times 7}
Express \frac{\frac{7}{2}}{7} as a single fraction.
n=\frac{1}{2}
Cancel out 7 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}