Evaluate
\frac{1}{2}=0.5
Factor
\frac{1}{2} = 0.5
Share
Copied to clipboard
\frac{5}{6}+\frac{2-\frac{35+23}{35}}{\frac{9}{25}}-\frac{1\times 7+2}{7}
Multiply 1 and 35 to get 35.
\frac{5}{6}+\frac{2-\frac{58}{35}}{\frac{9}{25}}-\frac{1\times 7+2}{7}
Add 35 and 23 to get 58.
\frac{5}{6}+\frac{\frac{70}{35}-\frac{58}{35}}{\frac{9}{25}}-\frac{1\times 7+2}{7}
Convert 2 to fraction \frac{70}{35}.
\frac{5}{6}+\frac{\frac{70-58}{35}}{\frac{9}{25}}-\frac{1\times 7+2}{7}
Since \frac{70}{35} and \frac{58}{35} have the same denominator, subtract them by subtracting their numerators.
\frac{5}{6}+\frac{\frac{12}{35}}{\frac{9}{25}}-\frac{1\times 7+2}{7}
Subtract 58 from 70 to get 12.
\frac{5}{6}+\frac{12}{35}\times \frac{25}{9}-\frac{1\times 7+2}{7}
Divide \frac{12}{35} by \frac{9}{25} by multiplying \frac{12}{35} by the reciprocal of \frac{9}{25}.
\frac{5}{6}+\frac{12\times 25}{35\times 9}-\frac{1\times 7+2}{7}
Multiply \frac{12}{35} times \frac{25}{9} by multiplying numerator times numerator and denominator times denominator.
\frac{5}{6}+\frac{300}{315}-\frac{1\times 7+2}{7}
Do the multiplications in the fraction \frac{12\times 25}{35\times 9}.
\frac{5}{6}+\frac{20}{21}-\frac{1\times 7+2}{7}
Reduce the fraction \frac{300}{315} to lowest terms by extracting and canceling out 15.
\frac{35}{42}+\frac{40}{42}-\frac{1\times 7+2}{7}
Least common multiple of 6 and 21 is 42. Convert \frac{5}{6} and \frac{20}{21} to fractions with denominator 42.
\frac{35+40}{42}-\frac{1\times 7+2}{7}
Since \frac{35}{42} and \frac{40}{42} have the same denominator, add them by adding their numerators.
\frac{75}{42}-\frac{1\times 7+2}{7}
Add 35 and 40 to get 75.
\frac{25}{14}-\frac{1\times 7+2}{7}
Reduce the fraction \frac{75}{42} to lowest terms by extracting and canceling out 3.
\frac{25}{14}-\frac{7+2}{7}
Multiply 1 and 7 to get 7.
\frac{25}{14}-\frac{9}{7}
Add 7 and 2 to get 9.
\frac{25}{14}-\frac{18}{14}
Least common multiple of 14 and 7 is 14. Convert \frac{25}{14} and \frac{9}{7} to fractions with denominator 14.
\frac{25-18}{14}
Since \frac{25}{14} and \frac{18}{14} have the same denominator, subtract them by subtracting their numerators.
\frac{7}{14}
Subtract 18 from 25 to get 7.
\frac{1}{2}
Reduce the fraction \frac{7}{14} to lowest terms by extracting and canceling out 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}