Verify
false
Share
Copied to clipboard
\frac{5}{6}+\frac{\frac{9}{14}}{\frac{35}{42}}+\frac{21}{4}=1\text{ and }\frac{42}{42}=\frac{31}{21}
Divide 42 by 42 to get 1.
\frac{5}{6}+\frac{\frac{9}{14}}{\frac{35}{42}}+\frac{21}{4}=1\text{ and }1=\frac{31}{21}
Divide 42 by 42 to get 1.
\frac{5}{6}+\frac{9\times 42}{14\times 35}+\frac{21}{4}=1\text{ and }1=\frac{31}{21}
Divide \frac{9}{14} by \frac{35}{42} by multiplying \frac{9}{14} by the reciprocal of \frac{35}{42}.
\frac{5}{6}+\frac{3\times 9}{35}+\frac{21}{4}=1\text{ and }1=\frac{31}{21}
Cancel out 14 in both numerator and denominator.
\frac{5}{6}+\frac{27}{35}+\frac{21}{4}=1\text{ and }1=\frac{31}{21}
Multiply 3 and 9 to get 27.
\frac{175}{210}+\frac{162}{210}+\frac{21}{4}=1\text{ and }1=\frac{31}{21}
Least common multiple of 6 and 35 is 210. Convert \frac{5}{6} and \frac{27}{35} to fractions with denominator 210.
\frac{175+162}{210}+\frac{21}{4}=1\text{ and }1=\frac{31}{21}
Since \frac{175}{210} and \frac{162}{210} have the same denominator, add them by adding their numerators.
\frac{337}{210}+\frac{21}{4}=1\text{ and }1=\frac{31}{21}
Add 175 and 162 to get 337.
\frac{674}{420}+\frac{2205}{420}=1\text{ and }1=\frac{31}{21}
Least common multiple of 210 and 4 is 420. Convert \frac{337}{210} and \frac{21}{4} to fractions with denominator 420.
\frac{674+2205}{420}=1\text{ and }1=\frac{31}{21}
Since \frac{674}{420} and \frac{2205}{420} have the same denominator, add them by adding their numerators.
\frac{2879}{420}=1\text{ and }1=\frac{31}{21}
Add 674 and 2205 to get 2879.
\frac{2879}{420}=\frac{420}{420}\text{ and }1=\frac{31}{21}
Convert 1 to fraction \frac{420}{420}.
\text{false}\text{ and }1=\frac{31}{21}
Compare \frac{2879}{420} and \frac{420}{420}.
\text{false}\text{ and }\frac{21}{21}=\frac{31}{21}
Convert 1 to fraction \frac{21}{21}.
\text{false}\text{ and }\text{false}
Compare \frac{21}{21} and \frac{31}{21}.
\text{false}
The conjunction of \text{false} and \text{false} is \text{false}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}