Evaluate
\frac{167}{288}\approx 0.579861111
Factor
\frac{167}{2 ^ {5} \cdot 3 ^ {2}} = 0.5798611111111112
Share
Copied to clipboard
\frac{15}{18}+\frac{8}{18}-\frac{25}{32}+\frac{5}{8}\times \frac{2}{15}
Least common multiple of 6 and 9 is 18. Convert \frac{5}{6} and \frac{4}{9} to fractions with denominator 18.
\frac{15+8}{18}-\frac{25}{32}+\frac{5}{8}\times \frac{2}{15}
Since \frac{15}{18} and \frac{8}{18} have the same denominator, add them by adding their numerators.
\frac{23}{18}-\frac{25}{32}+\frac{5}{8}\times \frac{2}{15}
Add 15 and 8 to get 23.
\frac{368}{288}-\frac{225}{288}+\frac{5}{8}\times \frac{2}{15}
Least common multiple of 18 and 32 is 288. Convert \frac{23}{18} and \frac{25}{32} to fractions with denominator 288.
\frac{368-225}{288}+\frac{5}{8}\times \frac{2}{15}
Since \frac{368}{288} and \frac{225}{288} have the same denominator, subtract them by subtracting their numerators.
\frac{143}{288}+\frac{5}{8}\times \frac{2}{15}
Subtract 225 from 368 to get 143.
\frac{143}{288}+\frac{5\times 2}{8\times 15}
Multiply \frac{5}{8} times \frac{2}{15} by multiplying numerator times numerator and denominator times denominator.
\frac{143}{288}+\frac{10}{120}
Do the multiplications in the fraction \frac{5\times 2}{8\times 15}.
\frac{143}{288}+\frac{1}{12}
Reduce the fraction \frac{10}{120} to lowest terms by extracting and canceling out 10.
\frac{143}{288}+\frac{24}{288}
Least common multiple of 288 and 12 is 288. Convert \frac{143}{288} and \frac{1}{12} to fractions with denominator 288.
\frac{143+24}{288}
Since \frac{143}{288} and \frac{24}{288} have the same denominator, add them by adding their numerators.
\frac{167}{288}
Add 143 and 24 to get 167.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}