Evaluate
-\frac{31}{18}\approx -1.722222222
Factor
-\frac{31}{18} = -1\frac{13}{18} = -1.7222222222222223
Share
Copied to clipboard
\frac{5}{6}+-\frac{1}{3}-\frac{3}{3}-\left(-\frac{3}{2}+\frac{1\times 3+1}{3}-\frac{4}{9}\right)-2-\left(\frac{7}{18}-1+\frac{4}{9}\right)
Convert 1 to fraction \frac{3}{3}.
\frac{5}{6}+\frac{-1-3}{3}-\left(-\frac{3}{2}+\frac{1\times 3+1}{3}-\frac{4}{9}\right)-2-\left(\frac{7}{18}-1+\frac{4}{9}\right)
Since -\frac{1}{3} and \frac{3}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{5}{6}+-\frac{4}{3}-\left(-\frac{3}{2}+\frac{1\times 3+1}{3}-\frac{4}{9}\right)-2-\left(\frac{7}{18}-1+\frac{4}{9}\right)
Subtract 3 from -1 to get -4.
\frac{5}{6}+-\frac{4}{3}-\left(-\frac{3}{2}+\frac{3+1}{3}-\frac{4}{9}\right)-2-\left(\frac{7}{18}-1+\frac{4}{9}\right)
Multiply 1 and 3 to get 3.
\frac{5}{6}+-\frac{4}{3}-\left(-\frac{3}{2}+\frac{4}{3}-\frac{4}{9}\right)-2-\left(\frac{7}{18}-1+\frac{4}{9}\right)
Add 3 and 1 to get 4.
\frac{5}{6}+-\frac{4}{3}-\left(-\frac{9}{6}+\frac{8}{6}-\frac{4}{9}\right)-2-\left(\frac{7}{18}-1+\frac{4}{9}\right)
Least common multiple of 2 and 3 is 6. Convert -\frac{3}{2} and \frac{4}{3} to fractions with denominator 6.
\frac{5}{6}+-\frac{4}{3}-\left(\frac{-9+8}{6}-\frac{4}{9}\right)-2-\left(\frac{7}{18}-1+\frac{4}{9}\right)
Since -\frac{9}{6} and \frac{8}{6} have the same denominator, add them by adding their numerators.
\frac{5}{6}+-\frac{4}{3}-\left(-\frac{1}{6}-\frac{4}{9}\right)-2-\left(\frac{7}{18}-1+\frac{4}{9}\right)
Add -9 and 8 to get -1.
\frac{5}{6}+-\frac{4}{3}-\left(-\frac{3}{18}-\frac{8}{18}\right)-2-\left(\frac{7}{18}-1+\frac{4}{9}\right)
Least common multiple of 6 and 9 is 18. Convert -\frac{1}{6} and \frac{4}{9} to fractions with denominator 18.
\frac{5}{6}+-\frac{4}{3}-\frac{-3-8}{18}-2-\left(\frac{7}{18}-1+\frac{4}{9}\right)
Since -\frac{3}{18} and \frac{8}{18} have the same denominator, subtract them by subtracting their numerators.
\frac{5}{6}+-\frac{4}{3}-\left(-\frac{11}{18}\right)-2-\left(\frac{7}{18}-1+\frac{4}{9}\right)
Subtract 8 from -3 to get -11.
\frac{5}{6}+-\frac{4}{3}+\frac{11}{18}-2-\left(\frac{7}{18}-1+\frac{4}{9}\right)
The opposite of -\frac{11}{18} is \frac{11}{18}.
\frac{5}{6}+-\frac{24}{18}+\frac{11}{18}-2-\left(\frac{7}{18}-1+\frac{4}{9}\right)
Least common multiple of 3 and 18 is 18. Convert -\frac{4}{3} and \frac{11}{18} to fractions with denominator 18.
\frac{5}{6}+\frac{-24+11}{18}-2-\left(\frac{7}{18}-1+\frac{4}{9}\right)
Since -\frac{24}{18} and \frac{11}{18} have the same denominator, add them by adding their numerators.
\frac{5}{6}+-\frac{13}{18}-2-\left(\frac{7}{18}-1+\frac{4}{9}\right)
Add -24 and 11 to get -13.
\frac{5}{6}+-\frac{13}{18}-\frac{36}{18}-\left(\frac{7}{18}-1+\frac{4}{9}\right)
Convert 2 to fraction \frac{36}{18}.
\frac{5}{6}+\frac{-13-36}{18}-\left(\frac{7}{18}-1+\frac{4}{9}\right)
Since -\frac{13}{18} and \frac{36}{18} have the same denominator, subtract them by subtracting their numerators.
\frac{5}{6}+-\frac{49}{18}-\left(\frac{7}{18}-1+\frac{4}{9}\right)
Subtract 36 from -13 to get -49.
\frac{5}{6}+-\frac{49}{18}-\left(\frac{7}{18}-\frac{18}{18}+\frac{4}{9}\right)
Convert 1 to fraction \frac{18}{18}.
\frac{5}{6}+-\frac{49}{18}-\left(\frac{7-18}{18}+\frac{4}{9}\right)
Since \frac{7}{18} and \frac{18}{18} have the same denominator, subtract them by subtracting their numerators.
\frac{5}{6}+-\frac{49}{18}-\left(-\frac{11}{18}+\frac{4}{9}\right)
Subtract 18 from 7 to get -11.
\frac{5}{6}+-\frac{49}{18}-\left(-\frac{11}{18}+\frac{8}{18}\right)
Least common multiple of 18 and 9 is 18. Convert -\frac{11}{18} and \frac{4}{9} to fractions with denominator 18.
\frac{5}{6}-\frac{49}{18}-\frac{-11+8}{18}
Since -\frac{11}{18} and \frac{8}{18} have the same denominator, add them by adding their numerators.
\frac{5}{6}-\frac{49}{18}-\frac{-3}{18}
Add -11 and 8 to get -3.
\frac{5}{6}+-\frac{49}{18}-\left(-\frac{1}{6}\right)
Reduce the fraction \frac{-3}{18} to lowest terms by extracting and canceling out 3.
\frac{5}{6}-\frac{49}{18}+\frac{1}{6}
The opposite of -\frac{1}{6} is \frac{1}{6}.
\frac{5}{6}-\frac{49}{18}+\frac{3}{18}
Least common multiple of 18 and 6 is 18. Convert -\frac{49}{18} and \frac{1}{6} to fractions with denominator 18.
\frac{5}{6}+\frac{-49+3}{18}
Since -\frac{49}{18} and \frac{3}{18} have the same denominator, add them by adding their numerators.
\frac{5}{6}+\frac{-46}{18}
Add -49 and 3 to get -46.
\frac{5}{6}-\frac{23}{9}
Reduce the fraction \frac{-46}{18} to lowest terms by extracting and canceling out 2.
\frac{15}{18}-\frac{46}{18}
Least common multiple of 6 and 9 is 18. Convert \frac{5}{6} and \frac{23}{9} to fractions with denominator 18.
\frac{15-46}{18}
Since \frac{15}{18} and \frac{46}{18} have the same denominator, subtract them by subtracting their numerators.
-\frac{31}{18}
Subtract 46 from 15 to get -31.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}