Solve for x
x=0
Graph
Share
Copied to clipboard
\left(x+3\right)\times 5-\left(2x+9\right)=\left(5x+2\right)\times 3
Variable x cannot be equal to any of the values -3,-\frac{2}{5} since division by zero is not defined. Multiply both sides of the equation by \left(x+3\right)\left(5x+2\right), the least common multiple of 5x+2,5x^{2}+17x+6,x+3.
5x+15-\left(2x+9\right)=\left(5x+2\right)\times 3
Use the distributive property to multiply x+3 by 5.
5x+15-2x-9=\left(5x+2\right)\times 3
To find the opposite of 2x+9, find the opposite of each term.
3x+15-9=\left(5x+2\right)\times 3
Combine 5x and -2x to get 3x.
3x+6=\left(5x+2\right)\times 3
Subtract 9 from 15 to get 6.
3x+6=15x+6
Use the distributive property to multiply 5x+2 by 3.
3x+6-15x=6
Subtract 15x from both sides.
-12x+6=6
Combine 3x and -15x to get -12x.
-12x=6-6
Subtract 6 from both sides.
-12x=0
Subtract 6 from 6 to get 0.
x=0
Product of two numbers is equal to 0 if at least one of them is 0. Since -12 is not equal to 0, x must be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}