Solve for x
x = \frac{\sqrt{401} + 9}{2} \approx 14.512492197
x=\frac{9-\sqrt{401}}{2}\approx -5.512492197
Graph
Share
Copied to clipboard
\left(2x+12\right)\times 5+\left(2x+10\right)\times 5=\left(x+5\right)\left(x+6\right)
Variable x cannot be equal to any of the values -6,-5 since division by zero is not defined. Multiply both sides of the equation by 2\left(x+5\right)\left(x+6\right), the least common multiple of 5+x,6+x,2.
10x+60+\left(2x+10\right)\times 5=\left(x+5\right)\left(x+6\right)
Use the distributive property to multiply 2x+12 by 5.
10x+60+10x+50=\left(x+5\right)\left(x+6\right)
Use the distributive property to multiply 2x+10 by 5.
20x+60+50=\left(x+5\right)\left(x+6\right)
Combine 10x and 10x to get 20x.
20x+110=\left(x+5\right)\left(x+6\right)
Add 60 and 50 to get 110.
20x+110=x^{2}+11x+30
Use the distributive property to multiply x+5 by x+6 and combine like terms.
20x+110-x^{2}=11x+30
Subtract x^{2} from both sides.
20x+110-x^{2}-11x=30
Subtract 11x from both sides.
9x+110-x^{2}=30
Combine 20x and -11x to get 9x.
9x+110-x^{2}-30=0
Subtract 30 from both sides.
9x+80-x^{2}=0
Subtract 30 from 110 to get 80.
-x^{2}+9x+80=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-9±\sqrt{9^{2}-4\left(-1\right)\times 80}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 9 for b, and 80 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-9±\sqrt{81-4\left(-1\right)\times 80}}{2\left(-1\right)}
Square 9.
x=\frac{-9±\sqrt{81+4\times 80}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-9±\sqrt{81+320}}{2\left(-1\right)}
Multiply 4 times 80.
x=\frac{-9±\sqrt{401}}{2\left(-1\right)}
Add 81 to 320.
x=\frac{-9±\sqrt{401}}{-2}
Multiply 2 times -1.
x=\frac{\sqrt{401}-9}{-2}
Now solve the equation x=\frac{-9±\sqrt{401}}{-2} when ± is plus. Add -9 to \sqrt{401}.
x=\frac{9-\sqrt{401}}{2}
Divide -9+\sqrt{401} by -2.
x=\frac{-\sqrt{401}-9}{-2}
Now solve the equation x=\frac{-9±\sqrt{401}}{-2} when ± is minus. Subtract \sqrt{401} from -9.
x=\frac{\sqrt{401}+9}{2}
Divide -9-\sqrt{401} by -2.
x=\frac{9-\sqrt{401}}{2} x=\frac{\sqrt{401}+9}{2}
The equation is now solved.
\left(2x+12\right)\times 5+\left(2x+10\right)\times 5=\left(x+5\right)\left(x+6\right)
Variable x cannot be equal to any of the values -6,-5 since division by zero is not defined. Multiply both sides of the equation by 2\left(x+5\right)\left(x+6\right), the least common multiple of 5+x,6+x,2.
10x+60+\left(2x+10\right)\times 5=\left(x+5\right)\left(x+6\right)
Use the distributive property to multiply 2x+12 by 5.
10x+60+10x+50=\left(x+5\right)\left(x+6\right)
Use the distributive property to multiply 2x+10 by 5.
20x+60+50=\left(x+5\right)\left(x+6\right)
Combine 10x and 10x to get 20x.
20x+110=\left(x+5\right)\left(x+6\right)
Add 60 and 50 to get 110.
20x+110=x^{2}+11x+30
Use the distributive property to multiply x+5 by x+6 and combine like terms.
20x+110-x^{2}=11x+30
Subtract x^{2} from both sides.
20x+110-x^{2}-11x=30
Subtract 11x from both sides.
9x+110-x^{2}=30
Combine 20x and -11x to get 9x.
9x-x^{2}=30-110
Subtract 110 from both sides.
9x-x^{2}=-80
Subtract 110 from 30 to get -80.
-x^{2}+9x=-80
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+9x}{-1}=-\frac{80}{-1}
Divide both sides by -1.
x^{2}+\frac{9}{-1}x=-\frac{80}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-9x=-\frac{80}{-1}
Divide 9 by -1.
x^{2}-9x=80
Divide -80 by -1.
x^{2}-9x+\left(-\frac{9}{2}\right)^{2}=80+\left(-\frac{9}{2}\right)^{2}
Divide -9, the coefficient of the x term, by 2 to get -\frac{9}{2}. Then add the square of -\frac{9}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-9x+\frac{81}{4}=80+\frac{81}{4}
Square -\frac{9}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-9x+\frac{81}{4}=\frac{401}{4}
Add 80 to \frac{81}{4}.
\left(x-\frac{9}{2}\right)^{2}=\frac{401}{4}
Factor x^{2}-9x+\frac{81}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{2}\right)^{2}}=\sqrt{\frac{401}{4}}
Take the square root of both sides of the equation.
x-\frac{9}{2}=\frac{\sqrt{401}}{2} x-\frac{9}{2}=-\frac{\sqrt{401}}{2}
Simplify.
x=\frac{\sqrt{401}+9}{2} x=\frac{9-\sqrt{401}}{2}
Add \frac{9}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}