Evaluate
1
Factor
1
Share
Copied to clipboard
\frac{5\left(4+\sqrt{11}\right)}{\left(4-\sqrt{11}\right)\left(4+\sqrt{11}\right)}-\frac{4}{\sqrt{11}-\sqrt{7}}-\frac{2}{3+\sqrt{7}}
Rationalize the denominator of \frac{5}{4-\sqrt{11}} by multiplying numerator and denominator by 4+\sqrt{11}.
\frac{5\left(4+\sqrt{11}\right)}{4^{2}-\left(\sqrt{11}\right)^{2}}-\frac{4}{\sqrt{11}-\sqrt{7}}-\frac{2}{3+\sqrt{7}}
Consider \left(4-\sqrt{11}\right)\left(4+\sqrt{11}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{5\left(4+\sqrt{11}\right)}{16-11}-\frac{4}{\sqrt{11}-\sqrt{7}}-\frac{2}{3+\sqrt{7}}
Square 4. Square \sqrt{11}.
\frac{5\left(4+\sqrt{11}\right)}{5}-\frac{4}{\sqrt{11}-\sqrt{7}}-\frac{2}{3+\sqrt{7}}
Subtract 11 from 16 to get 5.
4+\sqrt{11}-\frac{4}{\sqrt{11}-\sqrt{7}}-\frac{2}{3+\sqrt{7}}
Cancel out 5 and 5.
4+\sqrt{11}-\frac{4\left(\sqrt{11}+\sqrt{7}\right)}{\left(\sqrt{11}-\sqrt{7}\right)\left(\sqrt{11}+\sqrt{7}\right)}-\frac{2}{3+\sqrt{7}}
Rationalize the denominator of \frac{4}{\sqrt{11}-\sqrt{7}} by multiplying numerator and denominator by \sqrt{11}+\sqrt{7}.
4+\sqrt{11}-\frac{4\left(\sqrt{11}+\sqrt{7}\right)}{\left(\sqrt{11}\right)^{2}-\left(\sqrt{7}\right)^{2}}-\frac{2}{3+\sqrt{7}}
Consider \left(\sqrt{11}-\sqrt{7}\right)\left(\sqrt{11}+\sqrt{7}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
4+\sqrt{11}-\frac{4\left(\sqrt{11}+\sqrt{7}\right)}{11-7}-\frac{2}{3+\sqrt{7}}
Square \sqrt{11}. Square \sqrt{7}.
4+\sqrt{11}-\frac{4\left(\sqrt{11}+\sqrt{7}\right)}{4}-\frac{2}{3+\sqrt{7}}
Subtract 7 from 11 to get 4.
4+\sqrt{11}-\left(\sqrt{11}+\sqrt{7}\right)-\frac{2}{3+\sqrt{7}}
Cancel out 4 and 4.
4+\sqrt{11}-\sqrt{11}-\sqrt{7}-\frac{2}{3+\sqrt{7}}
To find the opposite of \sqrt{11}+\sqrt{7}, find the opposite of each term.
4-\sqrt{7}-\frac{2}{3+\sqrt{7}}
Combine \sqrt{11} and -\sqrt{11} to get 0.
4-\sqrt{7}-\frac{2\left(3-\sqrt{7}\right)}{\left(3+\sqrt{7}\right)\left(3-\sqrt{7}\right)}
Rationalize the denominator of \frac{2}{3+\sqrt{7}} by multiplying numerator and denominator by 3-\sqrt{7}.
4-\sqrt{7}-\frac{2\left(3-\sqrt{7}\right)}{3^{2}-\left(\sqrt{7}\right)^{2}}
Consider \left(3+\sqrt{7}\right)\left(3-\sqrt{7}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
4-\sqrt{7}-\frac{2\left(3-\sqrt{7}\right)}{9-7}
Square 3. Square \sqrt{7}.
4-\sqrt{7}-\frac{2\left(3-\sqrt{7}\right)}{2}
Subtract 7 from 9 to get 2.
4-\sqrt{7}-\left(3-\sqrt{7}\right)
Cancel out 2 and 2.
4-\sqrt{7}-3-\left(-\sqrt{7}\right)
To find the opposite of 3-\sqrt{7}, find the opposite of each term.
4-\sqrt{7}-3+\sqrt{7}
The opposite of -\sqrt{7} is \sqrt{7}.
1-\sqrt{7}+\sqrt{7}
Subtract 3 from 4 to get 1.
1
Combine -\sqrt{7} and \sqrt{7} to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}