Solve for x (complex solution)
x=\frac{9\sqrt{6}+\sqrt{10}i}{16}\approx 1.37783798+0.197642354i
x=\frac{-\sqrt{10}i+9\sqrt{6}}{16}\approx 1.37783798-0.197642354i
Graph
Share
Copied to clipboard
\frac{5}{4}x^{2}+\frac{9}{4}\left(3x^{2}-4\sqrt{6}x\right)+18=\frac{45}{18}
Use the distributive property to multiply \frac{9}{4} by 3x^{2}-4\sqrt{6}x+8.
\frac{5}{4}x^{2}+\frac{9}{4}\left(3x^{2}-4\sqrt{6}x\right)+18=\frac{5}{2}
Reduce the fraction \frac{45}{18} to lowest terms by extracting and canceling out 9.
\frac{5}{4}x^{2}+\frac{9}{4}\left(3x^{2}-4\sqrt{6}x\right)+18-\frac{5}{2}=0
Subtract \frac{5}{2} from both sides.
\frac{5}{4}x^{2}+\frac{9}{4}\left(3x^{2}-4\sqrt{6}x\right)+\frac{31}{2}=0
Subtract \frac{5}{2} from 18 to get \frac{31}{2}.
\frac{5}{4}x^{2}+\frac{27}{4}x^{2}-9\sqrt{6}x+\frac{31}{2}=0
Use the distributive property to multiply \frac{9}{4} by 3x^{2}-4\sqrt{6}x.
8x^{2}-9\sqrt{6}x+\frac{31}{2}=0
Combine \frac{5}{4}x^{2} and \frac{27}{4}x^{2} to get 8x^{2}.
8x^{2}+\left(-9\sqrt{6}\right)x+\frac{31}{2}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-9\sqrt{6}\right)±\sqrt{\left(-9\sqrt{6}\right)^{2}-4\times 8\times \frac{31}{2}}}{2\times 8}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 8 for a, -9\sqrt{6} for b, and \frac{31}{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-9\sqrt{6}\right)±\sqrt{486-4\times 8\times \frac{31}{2}}}{2\times 8}
Square -9\sqrt{6}.
x=\frac{-\left(-9\sqrt{6}\right)±\sqrt{486-32\times \frac{31}{2}}}{2\times 8}
Multiply -4 times 8.
x=\frac{-\left(-9\sqrt{6}\right)±\sqrt{486-496}}{2\times 8}
Multiply -32 times \frac{31}{2}.
x=\frac{-\left(-9\sqrt{6}\right)±\sqrt{-10}}{2\times 8}
Add 486 to -496.
x=\frac{-\left(-9\sqrt{6}\right)±\sqrt{10}i}{2\times 8}
Take the square root of -10.
x=\frac{9\sqrt{6}±\sqrt{10}i}{2\times 8}
The opposite of -9\sqrt{6} is 9\sqrt{6}.
x=\frac{9\sqrt{6}±\sqrt{10}i}{16}
Multiply 2 times 8.
x=\frac{9\sqrt{6}+\sqrt{10}i}{16}
Now solve the equation x=\frac{9\sqrt{6}±\sqrt{10}i}{16} when ± is plus. Add 9\sqrt{6} to i\sqrt{10}.
x=\frac{-\sqrt{10}i+9\sqrt{6}}{16}
Now solve the equation x=\frac{9\sqrt{6}±\sqrt{10}i}{16} when ± is minus. Subtract i\sqrt{10} from 9\sqrt{6}.
x=\frac{9\sqrt{6}+\sqrt{10}i}{16} x=\frac{-\sqrt{10}i+9\sqrt{6}}{16}
The equation is now solved.
\frac{5}{4}x^{2}+\frac{9}{4}\left(3x^{2}-4\sqrt{6}x\right)+18=\frac{45}{18}
Use the distributive property to multiply \frac{9}{4} by 3x^{2}-4\sqrt{6}x+8.
\frac{5}{4}x^{2}+\frac{9}{4}\left(3x^{2}-4\sqrt{6}x\right)+18=\frac{5}{2}
Reduce the fraction \frac{45}{18} to lowest terms by extracting and canceling out 9.
\frac{5}{4}x^{2}+\frac{9}{4}\left(3x^{2}-4\sqrt{6}x\right)=\frac{5}{2}-18
Subtract 18 from both sides.
\frac{5}{4}x^{2}+\frac{9}{4}\left(3x^{2}-4\sqrt{6}x\right)=-\frac{31}{2}
Subtract 18 from \frac{5}{2} to get -\frac{31}{2}.
\frac{5}{4}x^{2}+\frac{27}{4}x^{2}-9\sqrt{6}x=-\frac{31}{2}
Use the distributive property to multiply \frac{9}{4} by 3x^{2}-4\sqrt{6}x.
8x^{2}-9\sqrt{6}x=-\frac{31}{2}
Combine \frac{5}{4}x^{2} and \frac{27}{4}x^{2} to get 8x^{2}.
8x^{2}+\left(-9\sqrt{6}\right)x=-\frac{31}{2}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{8x^{2}+\left(-9\sqrt{6}\right)x}{8}=-\frac{\frac{31}{2}}{8}
Divide both sides by 8.
x^{2}+\left(-\frac{9\sqrt{6}}{8}\right)x=-\frac{\frac{31}{2}}{8}
Dividing by 8 undoes the multiplication by 8.
x^{2}+\left(-\frac{9\sqrt{6}}{8}\right)x=-\frac{31}{16}
Divide -\frac{31}{2} by 8.
x^{2}+\left(-\frac{9\sqrt{6}}{8}\right)x+\left(-\frac{9\sqrt{6}}{16}\right)^{2}=-\frac{31}{16}+\left(-\frac{9\sqrt{6}}{16}\right)^{2}
Divide -\frac{9\sqrt{6}}{8}, the coefficient of the x term, by 2 to get -\frac{9\sqrt{6}}{16}. Then add the square of -\frac{9\sqrt{6}}{16} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\left(-\frac{9\sqrt{6}}{8}\right)x+\frac{243}{128}=-\frac{31}{16}+\frac{243}{128}
Square -\frac{9\sqrt{6}}{16}.
x^{2}+\left(-\frac{9\sqrt{6}}{8}\right)x+\frac{243}{128}=-\frac{5}{128}
Add -\frac{31}{16} to \frac{243}{128} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{9\sqrt{6}}{16}\right)^{2}=-\frac{5}{128}
Factor x^{2}+\left(-\frac{9\sqrt{6}}{8}\right)x+\frac{243}{128}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9\sqrt{6}}{16}\right)^{2}}=\sqrt{-\frac{5}{128}}
Take the square root of both sides of the equation.
x-\frac{9\sqrt{6}}{16}=\frac{\sqrt{10}i}{16} x-\frac{9\sqrt{6}}{16}=-\frac{\sqrt{10}i}{16}
Simplify.
x=\frac{9\sqrt{6}+\sqrt{10}i}{16} x=\frac{-\sqrt{10}i+9\sqrt{6}}{16}
Add \frac{9\sqrt{6}}{16} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}