Solve for u
u = -\frac{17}{7} = -2\frac{3}{7} \approx -2.428571429
Share
Copied to clipboard
\frac{7}{12}u=\frac{-3}{4}-\frac{2}{3}
Combine \frac{5}{4}u and -\frac{2}{3}u to get \frac{7}{12}u.
\frac{7}{12}u=-\frac{3}{4}-\frac{2}{3}
Fraction \frac{-3}{4} can be rewritten as -\frac{3}{4} by extracting the negative sign.
\frac{7}{12}u=-\frac{9}{12}-\frac{8}{12}
Least common multiple of 4 and 3 is 12. Convert -\frac{3}{4} and \frac{2}{3} to fractions with denominator 12.
\frac{7}{12}u=\frac{-9-8}{12}
Since -\frac{9}{12} and \frac{8}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{7}{12}u=-\frac{17}{12}
Subtract 8 from -9 to get -17.
u=-\frac{17}{12}\times \frac{12}{7}
Multiply both sides by \frac{12}{7}, the reciprocal of \frac{7}{12}.
u=\frac{-17\times 12}{12\times 7}
Multiply -\frac{17}{12} times \frac{12}{7} by multiplying numerator times numerator and denominator times denominator.
u=\frac{-17}{7}
Cancel out 12 in both numerator and denominator.
u=-\frac{17}{7}
Fraction \frac{-17}{7} can be rewritten as -\frac{17}{7} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}