Solve for t
t=\frac{\sqrt{61}i}{90}+\frac{4}{45}\approx 0.088888889+0.086780552i
t=-\frac{\sqrt{61}i}{90}+\frac{4}{45}\approx 0.088888889-0.086780552i
Share
Copied to clipboard
\frac{5}{4}t^{2}-\frac{2}{9}t+\frac{25}{1296}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-\left(-\frac{2}{9}\right)±\sqrt{\left(-\frac{2}{9}\right)^{2}-4\times \frac{5}{4}\times \frac{25}{1296}}}{2\times \frac{5}{4}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{5}{4} for a, -\frac{2}{9} for b, and \frac{25}{1296} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-\frac{2}{9}\right)±\sqrt{\frac{4}{81}-4\times \frac{5}{4}\times \frac{25}{1296}}}{2\times \frac{5}{4}}
Square -\frac{2}{9} by squaring both the numerator and the denominator of the fraction.
t=\frac{-\left(-\frac{2}{9}\right)±\sqrt{\frac{4}{81}-5\times \frac{25}{1296}}}{2\times \frac{5}{4}}
Multiply -4 times \frac{5}{4}.
t=\frac{-\left(-\frac{2}{9}\right)±\sqrt{\frac{4}{81}-\frac{125}{1296}}}{2\times \frac{5}{4}}
Multiply -5 times \frac{25}{1296}.
t=\frac{-\left(-\frac{2}{9}\right)±\sqrt{-\frac{61}{1296}}}{2\times \frac{5}{4}}
Add \frac{4}{81} to -\frac{125}{1296} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
t=\frac{-\left(-\frac{2}{9}\right)±\frac{\sqrt{61}i}{36}}{2\times \frac{5}{4}}
Take the square root of -\frac{61}{1296}.
t=\frac{\frac{2}{9}±\frac{\sqrt{61}i}{36}}{2\times \frac{5}{4}}
The opposite of -\frac{2}{9} is \frac{2}{9}.
t=\frac{\frac{2}{9}±\frac{\sqrt{61}i}{36}}{\frac{5}{2}}
Multiply 2 times \frac{5}{4}.
t=\frac{\frac{\sqrt{61}i}{36}+\frac{2}{9}}{\frac{5}{2}}
Now solve the equation t=\frac{\frac{2}{9}±\frac{\sqrt{61}i}{36}}{\frac{5}{2}} when ± is plus. Add \frac{2}{9} to \frac{i\sqrt{61}}{36}.
t=\frac{\sqrt{61}i}{90}+\frac{4}{45}
Divide \frac{2}{9}+\frac{i\sqrt{61}}{36} by \frac{5}{2} by multiplying \frac{2}{9}+\frac{i\sqrt{61}}{36} by the reciprocal of \frac{5}{2}.
t=\frac{-\frac{\sqrt{61}i}{36}+\frac{2}{9}}{\frac{5}{2}}
Now solve the equation t=\frac{\frac{2}{9}±\frac{\sqrt{61}i}{36}}{\frac{5}{2}} when ± is minus. Subtract \frac{i\sqrt{61}}{36} from \frac{2}{9}.
t=-\frac{\sqrt{61}i}{90}+\frac{4}{45}
Divide \frac{2}{9}-\frac{i\sqrt{61}}{36} by \frac{5}{2} by multiplying \frac{2}{9}-\frac{i\sqrt{61}}{36} by the reciprocal of \frac{5}{2}.
t=\frac{\sqrt{61}i}{90}+\frac{4}{45} t=-\frac{\sqrt{61}i}{90}+\frac{4}{45}
The equation is now solved.
\frac{5}{4}t^{2}-\frac{2}{9}t+\frac{25}{1296}=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{5}{4}t^{2}-\frac{2}{9}t+\frac{25}{1296}-\frac{25}{1296}=-\frac{25}{1296}
Subtract \frac{25}{1296} from both sides of the equation.
\frac{5}{4}t^{2}-\frac{2}{9}t=-\frac{25}{1296}
Subtracting \frac{25}{1296} from itself leaves 0.
\frac{\frac{5}{4}t^{2}-\frac{2}{9}t}{\frac{5}{4}}=-\frac{\frac{25}{1296}}{\frac{5}{4}}
Divide both sides of the equation by \frac{5}{4}, which is the same as multiplying both sides by the reciprocal of the fraction.
t^{2}+\left(-\frac{\frac{2}{9}}{\frac{5}{4}}\right)t=-\frac{\frac{25}{1296}}{\frac{5}{4}}
Dividing by \frac{5}{4} undoes the multiplication by \frac{5}{4}.
t^{2}-\frac{8}{45}t=-\frac{\frac{25}{1296}}{\frac{5}{4}}
Divide -\frac{2}{9} by \frac{5}{4} by multiplying -\frac{2}{9} by the reciprocal of \frac{5}{4}.
t^{2}-\frac{8}{45}t=-\frac{5}{324}
Divide -\frac{25}{1296} by \frac{5}{4} by multiplying -\frac{25}{1296} by the reciprocal of \frac{5}{4}.
t^{2}-\frac{8}{45}t+\left(-\frac{4}{45}\right)^{2}=-\frac{5}{324}+\left(-\frac{4}{45}\right)^{2}
Divide -\frac{8}{45}, the coefficient of the x term, by 2 to get -\frac{4}{45}. Then add the square of -\frac{4}{45} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-\frac{8}{45}t+\frac{16}{2025}=-\frac{5}{324}+\frac{16}{2025}
Square -\frac{4}{45} by squaring both the numerator and the denominator of the fraction.
t^{2}-\frac{8}{45}t+\frac{16}{2025}=-\frac{61}{8100}
Add -\frac{5}{324} to \frac{16}{2025} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t-\frac{4}{45}\right)^{2}=-\frac{61}{8100}
Factor t^{2}-\frac{8}{45}t+\frac{16}{2025}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{4}{45}\right)^{2}}=\sqrt{-\frac{61}{8100}}
Take the square root of both sides of the equation.
t-\frac{4}{45}=\frac{\sqrt{61}i}{90} t-\frac{4}{45}=-\frac{\sqrt{61}i}{90}
Simplify.
t=\frac{\sqrt{61}i}{90}+\frac{4}{45} t=-\frac{\sqrt{61}i}{90}+\frac{4}{45}
Add \frac{4}{45} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}