Verify
false
Share
Copied to clipboard
\frac{\frac{5\times 2}{4\times 3}}{\frac{1}{5}}+\frac{\frac{2}{5}}{\frac{1}{10}}\times \frac{3}{4}+\frac{1}{2}\times \frac{4}{3}=\frac{1}{6}
Multiply \frac{5}{4} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{10}{12}}{\frac{1}{5}}+\frac{\frac{2}{5}}{\frac{1}{10}}\times \frac{3}{4}+\frac{1}{2}\times \frac{4}{3}=\frac{1}{6}
Do the multiplications in the fraction \frac{5\times 2}{4\times 3}.
\frac{\frac{5}{6}}{\frac{1}{5}}+\frac{\frac{2}{5}}{\frac{1}{10}}\times \frac{3}{4}+\frac{1}{2}\times \frac{4}{3}=\frac{1}{6}
Reduce the fraction \frac{10}{12} to lowest terms by extracting and canceling out 2.
\frac{5}{6}\times 5+\frac{\frac{2}{5}}{\frac{1}{10}}\times \frac{3}{4}+\frac{1}{2}\times \frac{4}{3}=\frac{1}{6}
Divide \frac{5}{6} by \frac{1}{5} by multiplying \frac{5}{6} by the reciprocal of \frac{1}{5}.
\frac{5\times 5}{6}+\frac{\frac{2}{5}}{\frac{1}{10}}\times \frac{3}{4}+\frac{1}{2}\times \frac{4}{3}=\frac{1}{6}
Express \frac{5}{6}\times 5 as a single fraction.
\frac{25}{6}+\frac{\frac{2}{5}}{\frac{1}{10}}\times \frac{3}{4}+\frac{1}{2}\times \frac{4}{3}=\frac{1}{6}
Multiply 5 and 5 to get 25.
\frac{25}{6}+\frac{2}{5}\times 10\times \frac{3}{4}+\frac{1}{2}\times \frac{4}{3}=\frac{1}{6}
Divide \frac{2}{5} by \frac{1}{10} by multiplying \frac{2}{5} by the reciprocal of \frac{1}{10}.
\frac{25}{6}+\frac{2\times 10}{5}\times \frac{3}{4}+\frac{1}{2}\times \frac{4}{3}=\frac{1}{6}
Express \frac{2}{5}\times 10 as a single fraction.
\frac{25}{6}+\frac{20}{5}\times \frac{3}{4}+\frac{1}{2}\times \frac{4}{3}=\frac{1}{6}
Multiply 2 and 10 to get 20.
\frac{25}{6}+4\times \frac{3}{4}+\frac{1}{2}\times \frac{4}{3}=\frac{1}{6}
Divide 20 by 5 to get 4.
\frac{25}{6}+3+\frac{1}{2}\times \frac{4}{3}=\frac{1}{6}
Cancel out 4 and 4.
\frac{25}{6}+\frac{18}{6}+\frac{1}{2}\times \frac{4}{3}=\frac{1}{6}
Convert 3 to fraction \frac{18}{6}.
\frac{25+18}{6}+\frac{1}{2}\times \frac{4}{3}=\frac{1}{6}
Since \frac{25}{6} and \frac{18}{6} have the same denominator, add them by adding their numerators.
\frac{43}{6}+\frac{1}{2}\times \frac{4}{3}=\frac{1}{6}
Add 25 and 18 to get 43.
\frac{43}{6}+\frac{1\times 4}{2\times 3}=\frac{1}{6}
Multiply \frac{1}{2} times \frac{4}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{43}{6}+\frac{4}{6}=\frac{1}{6}
Do the multiplications in the fraction \frac{1\times 4}{2\times 3}.
\frac{43+4}{6}=\frac{1}{6}
Since \frac{43}{6} and \frac{4}{6} have the same denominator, add them by adding their numerators.
\frac{47}{6}=\frac{1}{6}
Add 43 and 4 to get 47.
\text{false}
Compare \frac{47}{6} and \frac{1}{6}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}