Evaluate
-\frac{25}{12}\approx -2.083333333
Factor
-\frac{25}{12} = -2\frac{1}{12} = -2.0833333333333335
Share
Copied to clipboard
\frac{\frac{5}{4}\times 2}{-\frac{6}{5}}
Divide \frac{\frac{5}{4}}{-\frac{6}{5}} by \frac{1}{2} by multiplying \frac{\frac{5}{4}}{-\frac{6}{5}} by the reciprocal of \frac{1}{2}.
\frac{\frac{5\times 2}{4}}{-\frac{6}{5}}
Express \frac{5}{4}\times 2 as a single fraction.
\frac{\frac{10}{4}}{-\frac{6}{5}}
Multiply 5 and 2 to get 10.
\frac{\frac{5}{2}}{-\frac{6}{5}}
Reduce the fraction \frac{10}{4} to lowest terms by extracting and canceling out 2.
\frac{5}{2}\left(-\frac{5}{6}\right)
Divide \frac{5}{2} by -\frac{6}{5} by multiplying \frac{5}{2} by the reciprocal of -\frac{6}{5}.
\frac{5\left(-5\right)}{2\times 6}
Multiply \frac{5}{2} times -\frac{5}{6} by multiplying numerator times numerator and denominator times denominator.
\frac{-25}{12}
Do the multiplications in the fraction \frac{5\left(-5\right)}{2\times 6}.
-\frac{25}{12}
Fraction \frac{-25}{12} can be rewritten as -\frac{25}{12} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}